循环神经网络四-LSTM和GRU的使用

1.介绍

LSTM和GRU都是由torch.nn提供

torch.nn.LSTM(input_size,hidden_size,num_layers,batch_first,dropout,bidirectional) 其中:

1.input_size:输入数据的形状,即embedding_dim

2.hidden_size:隐藏神经元的数量,即每一层由多少个LSTM单元

3.num_layer:即RNN中LSTM的数量

4.batch_first:默认为False,输入数据需要[seq_len,batch,feature],如果为True,则为[batch,seq_len,feature]

5.dropout:dropout的比例,默认为0,dropout是一种训练过程中让部分参数随机失活的一种方式,能够提高训练速度,同时能解决过拟合的问题。这里是在LSTM的最后一层,对每个输出进行dropout

6.bidiretional:是否使用双向LSTM,默认为False

LSTM的输入:结合上一章内容,实例化LSTM的时候不仅要传入数据还要传入前一次的h_0和C_0

LSTM的输出:默认输出为output,(h_n,c_n)

1.output输出形式:(seq_len,batch,num_directions*hidden_size) 当batch_first=False时

2.h_n:(num_layers * num_directions, batch, hidden_size)

3.c_n:(num_layers * num_directions, batch, hidden_size)

二.LSTM使用示例

假设输入为input,形状为[10,20],假设embedding的形状是[100,30]

python 复制代码
import torch

batch_size=10  # 数据的条数
seq_len=20    #  没条数据的长度
embedding_dim=30  # 每条数据用多长的向量来表示
word_vocab=100   # 生成的词典中词语的总数
hidden_size=18   # 隐层中的lstm的个数
num_layer=2  # 多少个隐层

# 准备数据最小值为0最大值为一百的10行20列的数据
input=torch.randint(low=0,high=100,size=(batch_size,seq_len))
# 实例化embedding
embedding=torch.nn.Embedding(word_vocab,embedding_dim)
# 实例化LSTM
lstm=torch.nn.LSTM(embedding_dim,hidden_size,num_layer)
# 进行mebed操作
embed=embedding(input)
print(embed.size())  # torch.Size([10, 20, 30])
# 数据转化为batch_first=False的形状
embed=embed.permute(1,0,2)  # torch.Size([20, 10, 30])

# 初始化状态,如果不初始化,torch默认初始值全为0
h_0=torch.rand(num_layer,batch_size,hidden_size)  #torch.Size([2, 10, 18])

c_0=torch.rand(num_layer,batch_size,hidden_size)  #torch.Size([2, 10, 18])

output,(h_1,c_1)=lstm(embed,(h_0,c_0))  
print(output.size())  #torch.Size([20, 10, 18])
print(c_1.size())  #torch.Size([2, 10, 18])
print(h_1.size())   #torch.Size([2, 10, 18])

三.GRU的使用示例

和LSTM相同,也是从troch.nn中导入,而且参数也和LSTM相同。不同的是输入和输出

1.输入:输入的时候只用输入input和h_0,相比LSTM少了c_0

2.输出:输出两个数据output(seq_len, batch, num_directions*hidden_size),

h_n=(num_layers * num_directions, batch,hidden_size)

四.双向LSTM

如果需要使用双向LSTM,则要将实例化LSTM的过程中,将参数bidriectional设置为True,同时h_0,c_0的维度中num_layer*2

python 复制代码
import torch

batch_size=10  # 数据的条数
seq_len=20    #  没条数据的长度
embedding_dim=30  # 每条数据用多长的向量来表示
word_vocab=100   # 生成的词典中词语的总数
hidden_size=18   # 隐层中的lstm的个数
num_layer=2  # 多少个隐层

# 准备数据最小值为0最大值为一百的10行20列的数据
input=torch.randint(low=0,high=100,size=(batch_size,seq_len))
# 实例化embedding
embedding=torch.nn.Embedding(word_vocab,embedding_dim)
# 实例化LSTM,使用双向LSTM,所以bidirectional设置为True
lstm=torch.nn.LSTM(embedding_dim,hidden_size,num_layer, bidirectional=True)
# 进行mebed操作
embed=embedding(input)
print(embed.size())  # torch.Size([10, 20, 30])
# 数据转化为batch_first=False的形状
embed=embed.permute(1,0,2)  # torch.Size([20, 10, 30])

# 初始化状态,如果不初始化,torch默认初始值全为0,使用双向LSTM时,num_layer要乘2,也就是要两倍的隐藏层来实现双向
h_0=torch.rand(num_layer*2,batch_size,hidden_size)  #torch.Size([2, 10, 18])

c_0=torch.rand(num_layer*2,batch_size,hidden_size)  #torch.Size([2, 10, 18])

output,(h_1,c_1)=lstm(embed,(h_0,c_0))  
print(output.size())  #torch.Size([20, 10, 18])
print(c_1.size())  #torch.Size([2, 10, 18])
print(h_1.size())   #torch.Size([2, 10, 18])
相关推荐
FreeBuf_20 分钟前
从“策略对抗”到“模型对抗”:朴智平台如何重塑金融风控新范式?
大数据·人工智能
GJGCY2 小时前
金融智能体的技术底座解析:AI Agent如何实现“认知+执行”闭环?
人工智能·经验分享·ai·金融·自动化
koo3643 小时前
李宏毅机器学习笔记32
人工智能·笔记·机器学习
材料科学研究3 小时前
机器学习催化剂设计!
深度学习·机器学习·orr·催化剂·催化剂设计·oer
材料科学研究3 小时前
机器学习锂离子电池!预估电池!
深度学习·机器学习·锂离子电池·电池·电池健康·电池管理·电池寿命
长桥夜波3 小时前
机器学习日报04
人工智能·机器学习
Cathyqiii5 小时前
Diffusion-TS:一种基于季节性-趋势分解与重构引导的可解释时间序列扩散模型
人工智能·神经网络·1024程序员节
数字冰雹5 小时前
数字孪生技术 重构 智能仓储新生态
人工智能·重构
明明真系叻6 小时前
最优传输理论学习(1)+PINN文献阅读
深度学习·学习
EasyCVR6 小时前
从汇聚到智能:解析视频融合平台EasyCVR视频智能分析技术背后的关键技术
大数据·人工智能