Python pandas常见函数

Pandas库

bash 复制代码
pip install pandas

基本概念

  1. 数据结构

    • Series: 一维数据结构

      python 复制代码
      import pandas as pd
      data = pd.Series([10, 20, 30, 40], index=['a', 'b', 'c', 'd'])
      print(data)
    • DataFrame: 二维数据结构

      python 复制代码
      data = {
          'Name': ['Alice', 'Bob', 'Charlie'],
          'Age': [25, 30, 35]
      }
      df = pd.DataFrame(data)
      print(df)

读取数据

  1. 从 CSV 文件读取数据

    python 复制代码
    df = pd.read_csv('file.csv')
    print(df.head())
  2. 从 Excel 文件读取数据

    python 复制代码
    df = pd.read_excel('file.xlsx', sheet_name='Sheet1')
    print(df.head())
  3. 从 SQL 查询读取数据

    python 复制代码
    import sqlite3
    conn = sqlite3.connect('database.db')
    df = pd.read_sql_query('SELECT * FROM table', conn)
    print(df.head())

数据处理

  1. 查看数据

    • 查看前 5 行

      python 复制代码
      print(df.head())
    • 查看后 5 行

      python 复制代码
      print(df.tail())
    • 查看数据的简要信息

      python 复制代码
      print(df.info())
    • 查看数据的统计摘要

      python 复制代码
      print(df.describe())
  2. 选择和过滤数据

    • 按列选择

      python 复制代码
      print(df['Name'])
    • 按行选择

      python 复制代码
      print(df.loc[0])  # 按标签
      print(df.iloc[0])  # 按位置
    • 条件过滤

      python 复制代码
      filtered_df = df[df['Age'] > 30]
      print(filtered_df)
  3. 数据清洗

    • 处理缺失值

      python 复制代码
      df = df.dropna()  # 删除含缺失值的行
      df = df.fillna(0)  # 将缺失值填充为 0
    • 去重

      python 复制代码
      df = df.drop_duplicates()
    • 数据类型转换

      python 复制代码
      df['Age'] = df['Age'].astype(float)
  4. 数据操作

    • 添加列

      python 复制代码
      df['Country'] = 'USA'
    • 删除列

      python 复制代码
      df = df.drop('Country', axis=1)
    • 重命名列

      python 复制代码
      df = df.rename(columns={'Name': 'Full Name'})
  5. 数据聚合

    • 按组聚合

      python 复制代码
      grouped_df = df.groupby('Country').agg({'Age': 'mean'})
      print(grouped_df)
    • 合并数据

      python 复制代码
      df1 = pd.DataFrame({'ID': [1, 2], 'Value': ['A', 'B']})
      df2 = pd.DataFrame({'ID': [1, 2], 'Score': [85, 90]})
      merged_df = pd.merge(df1, df2, on='ID')
      print(merged_df)
    • 拼接数据

      python 复制代码
      df1 = pd.DataFrame({'Name': ['Alice', 'Bob']})
      df2 = pd.DataFrame({'Name': ['Charlie', 'David']})
      concatenated_df = pd.concat([df1, df2], ignore_index=True)
      print(concatenated_df)
  6. 数据排序

    • 按列排序

      python 复制代码
      sorted_df = df.sort_values(by='Age')
      print(sorted_df)
    • 排序方向

      python 复制代码
      sorted_df = df.sort_values(by='Age', ascending=False)
      print(sorted_df)

数据输出

  1. 保存为 CSV 文件

    python 复制代码
    df.to_csv('output.csv', index=False)
  2. 保存为 Excel 文件

    python 复制代码
    df.to_excel('output.xlsx', index=False)

其他常用功能

  1. 透视表

    python 复制代码
    pivot_table = pd.pivot_table(df, values='Age', index='Country', aggfunc='mean')
    print(pivot_table)
  2. 时间序列

    • 日期时间转换

      python 复制代码
      df['Date'] = pd.to_datetime(df['Date'])
    • 设置时间索引

      python 复制代码
      df = df.set_index('Date')
相关推荐
东阳马生架构2 小时前
MySQL底层概述—1.InnoDB内存结构
java·数据库·mysql
standxy2 小时前
通过轻易云平台实现聚水潭数据高效集成到MySQL的技术方案
android·数据库·mysql
itwangyang5202 小时前
2025 - 科研神器 - 批量处理 PDF、SVG、PNG 和 JPG 文件,将它们转换为彩色 TIFF 文件,并保存到指定的 tiff 文件夹中
数据库·pdf
black0moonlight2 小时前
ISAAC Gym 7. 使用箭头进行数据可视化
开发语言·python
程序员黄同学3 小时前
Python 中如何创建多行字符串?
前端·python
痞老板A小安装C43 小时前
redis的大key和热key问题解决方案
数据库·redis·bootstrap
feilieren3 小时前
DataGrip 连接 Redis、TongRDS
数据库·redis·缓存
液态不合群3 小时前
Redis中常见的数据类型及其应用场景
数据库·redis·wpf
Allen Bright3 小时前
Jedis存储一个-以String的形式的对象到Redis
数据库·redis·缓存
一点一木4 小时前
AI与数据集:从零基础到全面应用的深度解析(超详细教程)
人工智能·python·tensorflow