Redis 的6种回收策略(淘汰策略)详解

Redis 的6种回收策略(淘汰策略)详解

  • 1、Redis的六种淘汰策略
    • [1. volatile-lru](#1. volatile-lru)
    • [2. volatile-ttl](#2. volatile-ttl)
    • [3. volatile-random](#3. volatile-random)
    • [4. allkeys-lru](#4. allkeys-lru)
    • [5. allkeys-random](#5. allkeys-random)
    • [6. no-eviction](#6. no-eviction)
  • 2、使用策略规则

|-----------------------------|
| 💖The Begin💖点点关注,收藏不迷路💖 |

在Redis中,当内存使用达到上限时,为了保持服务的稳定性和响应速度,Redis提供了多种数据回收(淘汰)策略,以便在必要时释放内存空间。本文将详细介绍Redis的六种主要淘汰策略。

1、Redis的六种淘汰策略

1. volatile-lru

  • 说明 :从已设置过期时间的数据集(server.db[i].expires)中挑选最近最少使用的数据进行淘汰。
  • 适用场景:适用于数据访问频率差异较大的场景,即部分数据访问频繁,部分数据访问较少。

2. volatile-ttl

  • 说明:从已设置过期时间的数据集中挑选那些即将过期的数据进行淘汰。
  • 适用场景:当希望优先淘汰那些即将过期的数据时,可以使用此策略。

3. volatile-random

  • 说明:从已设置过期时间的数据集中随机选择数据进行淘汰。
  • 适用场景:当数据集的访问频率没有明显差异,且希望随机淘汰过期数据时,此策略是一个不错的选择。

4. allkeys-lru

  • 说明 :从所有数据集(server.db[i].dict)中挑选最近最少使用的数据进行淘汰,不局限于已设置过期时间的数据。
  • 适用场景:如果数据访问频率呈现出幂律分布(即大部分数据访问频率低,少数数据访问频率高),此策略非常有效。

5. allkeys-random

  • 说明:从所有数据集中随机选择数据进行淘汰。
  • 适用场景:当数据集的访问频率几乎相同时,可以使用此策略。然而,由于Redis的设计初衷是快速存取,因此这种策略在实际应用中并不常见。

6. no-eviction

  • 说明:不进行任何淘汰操作,当内存不足时,Redis会拒绝新的写入请求,并返回错误。
  • 适用场景:在某些特定的场景下,如不希望因淘汰数据而影响业务逻辑时,可以使用此策略。但需要注意的是,这可能会导致Redis服务拒绝新的写入请求。

2、使用策略规则

  • 幂律分布场景 :如果数据访问频率呈现出幂律分布,即大部分数据访问频率低,少数数据访问频率高,推荐使用allkeys-lru策略。这可以确保那些长时间未被访问的数据被优先淘汰,从而为新的热点数据腾出空间。

  • 平等分布场景 :如果数据集的访问频率几乎相同,即所有数据的访问频率都相似,那么可以考虑使用allkeys-random策略。然而,在实际应用中,这种情况较为少见,因为大多数业务场景下的数据访问都会存在一定的差异。

|---------------------------|
| 💖The End💖点点关注,收藏不迷路💖 |

相关推荐
小鹿撞出了脑震荡14 分钟前
SQLite3语句以及用实现FMDB数据存储的学习
数据库·学习·sqlite
小草儿79914 分钟前
gbase8s之mysql的show命令实现
数据库·mysql
斯普信专业组28 分钟前
MongoDB调优利器:掌握性能分析工具mongostat
数据库·mongodb·mongostat
会code的厨子28 分钟前
Redis缓存高可用集群
redis·缓存
.35 分钟前
接口 测试
数据库·oracle
理想不理想v39 分钟前
【经典】webpack和vite的区别?
java·前端·javascript·vue.js·面试
码到成功>_<1 小时前
Spring Boot实现License生成和校验
数据库·spring boot·后端
尽兴-1 小时前
Redis模拟延时队列 实现日程提醒
java·redis·java-rocketmq·mq
boy快快长大2 小时前
将大模型生成数据存入Excel,并用增量的方式存入Excel
java·数据库·excel
daiyang123...2 小时前
MySQL【知识改变命运】11
android·数据库·mysql