24/8/6算法笔记 支持向量机

支持向量机(Support Vector Machine, SVM)是一种监督学习算法,主要用于分类和回归任务。它基于统计学习理论中的结构风险最小化原理,通过找到数据点之间的最优边界来实现模型的泛化能力。

复制代码
import numpy as np
import matplotlib.pyplot as plt

from sklearn.svm import SVC
from sklearn import datasets


X,y = datasets.make_blobs(n_samples=100,#样本量
                    n_features=2,#二维数据,便于画图展示
                    centers = 2,#两类
                    random_state=3)#随机数状态,固定了
display(X.shape,y.shape,np.unique(y))
​
plt.scatter(X[:,0],X[:,1],c=y)

datasets.make_blobs 是 Python scikit-learn 库中的一个函数,用于生成具有不同形状和尺度的随机中心的多维数据集。这个函数通常用于创建合成数据集,以便进行测试和演示机器学习算法。

算法建模

复制代码
svc = SVC(kernel = 'linear')#kernel 表示核函数,linear,线性

svc.fit(X,y)
复制代码
svc.score(X,y)

绘制分割线

复制代码
w_ = svc.coef_#有两个特征
w_
复制代码
b_ = svc.intercept_
b_
复制代码
w = -w_[0,0]/w_[0,1]
w
复制代码
b, = -b_/w_[0,1]#逗号能将列表中的数取出来
b
复制代码
sv = svc.support_vectors_
sv
复制代码
x = np.linspace(-5,1,100)

y_result = w*x+b

plt.scatter(X[:,0],X[:,1],c=y)

plt.plot(x,y_result,color = 'red')
#上边界,下边界
b1 = sv[0][1] - w*sv[0][0]
plt.plot(x,w*x+b1,color = 'blue',ls='--')

b2 =  sv[-1][1] - w*sv[-1][0]
plt.plot(x,w*x+b2,color = 'blue',ls ='--')
相关推荐
飞川撸码30 分钟前
【LeetCode 热题100】网格路径类 DP 系列题:不同路径 & 最小路径和(力扣62 / 64 )(Go语言版)
算法·leetcode·golang·动态规划
Neil今天也要学习35 分钟前
永磁同步电机参数辨识算法--IPMSM拓展卡尔曼滤波全参数辨识
单片机·嵌入式硬件·算法
yzx9910132 小时前
基于 Q-Learning 算法和 CNN 的强化学习实现方案
人工智能·算法·cnn
亮亮爱刷题2 小时前
算法练习-回溯
算法
眼镜哥(with glasses)3 小时前
蓝桥杯 国赛2024python(b组)题目(1-3)
数据结构·算法·蓝桥杯
scdifsn7 小时前
动手学深度学习12.7. 参数服务器-笔记&练习(PyTorch)
pytorch·笔记·深度学习·分布式计算·数据并行·参数服务器
int型码农7 小时前
数据结构第八章(一) 插入排序
c语言·数据结构·算法·排序算法·希尔排序
UFIT7 小时前
NoSQL之redis哨兵
java·前端·算法
喜欢吃燃面7 小时前
C++刷题:日期模拟(1)
c++·学习·算法
SHERlocked937 小时前
CPP 从 0 到 1 完成一个支持 future/promise 的 Windows 异步串口通信库
c++·算法·promise