24/8/6算法笔记 支持向量机

支持向量机(Support Vector Machine, SVM)是一种监督学习算法,主要用于分类和回归任务。它基于统计学习理论中的结构风险最小化原理,通过找到数据点之间的最优边界来实现模型的泛化能力。

复制代码
import numpy as np
import matplotlib.pyplot as plt

from sklearn.svm import SVC
from sklearn import datasets


X,y = datasets.make_blobs(n_samples=100,#样本量
                    n_features=2,#二维数据,便于画图展示
                    centers = 2,#两类
                    random_state=3)#随机数状态,固定了
display(X.shape,y.shape,np.unique(y))
​
plt.scatter(X[:,0],X[:,1],c=y)

datasets.make_blobs 是 Python scikit-learn 库中的一个函数,用于生成具有不同形状和尺度的随机中心的多维数据集。这个函数通常用于创建合成数据集,以便进行测试和演示机器学习算法。

算法建模

复制代码
svc = SVC(kernel = 'linear')#kernel 表示核函数,linear,线性

svc.fit(X,y)
复制代码
svc.score(X,y)

绘制分割线

复制代码
w_ = svc.coef_#有两个特征
w_
复制代码
b_ = svc.intercept_
b_
复制代码
w = -w_[0,0]/w_[0,1]
w
复制代码
b, = -b_/w_[0,1]#逗号能将列表中的数取出来
b
复制代码
sv = svc.support_vectors_
sv
复制代码
x = np.linspace(-5,1,100)

y_result = w*x+b

plt.scatter(X[:,0],X[:,1],c=y)

plt.plot(x,y_result,color = 'red')
#上边界,下边界
b1 = sv[0][1] - w*sv[0][0]
plt.plot(x,w*x+b1,color = 'blue',ls='--')

b2 =  sv[-1][1] - w*sv[-1][0]
plt.plot(x,w*x+b2,color = 'blue',ls ='--')
相关推荐
gsfl26 分钟前
贪心算法1
算法·贪心算法
小猪咪piggy1 小时前
【算法】day8 二分查找+前缀和
算法
Word码1 小时前
[排序算法]希尔排序
c语言·数据结构·算法·排序算法
前端小刘哥1 小时前
解析视频直播点播平台EasyDSS在视频点播领域的技术架构与性能优势
算法
QT 小鲜肉1 小时前
【数据结构与算法基础】05. 栈详解(C++ 实战)
开发语言·数据结构·c++·笔记·学习·算法·学习方法
lingran__1 小时前
算法沉淀第七天(AtCoder Beginner Contest 428 和 小训练赛)
c++·算法
前端小刘哥1 小时前
新版视频直播点播平台EasyDSS,打通远程教研与教师培训新通路
算法
2401_840105201 小时前
P1049 装箱问题 题解(四种方法)附DP和DFS的对比
c++·算法·深度优先·动态规划
kobe_t1 小时前
数据安全系列7:常用的非对称算法浅析
算法
靠近彗星1 小时前
3.4特殊矩阵的压缩存储
数据结构·人工智能·算法