24/8/6算法笔记 支持向量机

支持向量机(Support Vector Machine, SVM)是一种监督学习算法,主要用于分类和回归任务。它基于统计学习理论中的结构风险最小化原理,通过找到数据点之间的最优边界来实现模型的泛化能力。

复制代码
import numpy as np
import matplotlib.pyplot as plt

from sklearn.svm import SVC
from sklearn import datasets


X,y = datasets.make_blobs(n_samples=100,#样本量
                    n_features=2,#二维数据,便于画图展示
                    centers = 2,#两类
                    random_state=3)#随机数状态,固定了
display(X.shape,y.shape,np.unique(y))
​
plt.scatter(X[:,0],X[:,1],c=y)

datasets.make_blobs 是 Python scikit-learn 库中的一个函数,用于生成具有不同形状和尺度的随机中心的多维数据集。这个函数通常用于创建合成数据集,以便进行测试和演示机器学习算法。

算法建模

复制代码
svc = SVC(kernel = 'linear')#kernel 表示核函数,linear,线性

svc.fit(X,y)
复制代码
svc.score(X,y)

绘制分割线

复制代码
w_ = svc.coef_#有两个特征
w_
复制代码
b_ = svc.intercept_
b_
复制代码
w = -w_[0,0]/w_[0,1]
w
复制代码
b, = -b_/w_[0,1]#逗号能将列表中的数取出来
b
复制代码
sv = svc.support_vectors_
sv
复制代码
x = np.linspace(-5,1,100)

y_result = w*x+b

plt.scatter(X[:,0],X[:,1],c=y)

plt.plot(x,y_result,color = 'red')
#上边界,下边界
b1 = sv[0][1] - w*sv[0][0]
plt.plot(x,w*x+b1,color = 'blue',ls='--')

b2 =  sv[-1][1] - w*sv[-1][0]
plt.plot(x,w*x+b2,color = 'blue',ls ='--')
相关推荐
卡布叻_星星1 小时前
Vue 生态演进指南:主流框架搭配以及Vue CLI vs Vite 与 Vue2 vs Vue3 核心区别
笔记
小裕哥略帅1 小时前
PMP学习笔记--环境
笔记·学习
leo__5202 小时前
基于两步成像算法的聚束模式SAR MATLAB实现
开发语言·算法·matlab
liuaa412 小时前
期刊论文笔记
笔记
HXR_plume2 小时前
【Web信息处理与应用课程笔记3】个性化检索(上)
笔记
前端小白在前进2 小时前
力扣刷题:在排序数组中查找元素的第一个和最后一个位置
数据结构·算法·leetcode
某林2123 小时前
基于SLAM Toolbox的移动机器人激光建图算法原理与工程实现
stm32·嵌入式硬件·算法·slam
修炼地3 小时前
代码随想录算法训练营第四十三天 | 图论理论基础、深搜理论基础、卡码网98. 所有可达路径、797. 所有可能的路径、广搜理论基础
算法·深度优先·图论
iAkuya3 小时前
(leetcode)力扣100 23反转链表(迭代||递归)
算法·leetcode·链表
剪一朵云爱着4 小时前
PAT 1095 Cars on Campus
算法·pat考试