24/8/6算法笔记 支持向量机

支持向量机(Support Vector Machine, SVM)是一种监督学习算法,主要用于分类和回归任务。它基于统计学习理论中的结构风险最小化原理,通过找到数据点之间的最优边界来实现模型的泛化能力。

import numpy as np
import matplotlib.pyplot as plt

from sklearn.svm import SVC
from sklearn import datasets


X,y = datasets.make_blobs(n_samples=100,#样本量
                    n_features=2,#二维数据,便于画图展示
                    centers = 2,#两类
                    random_state=3)#随机数状态,固定了
display(X.shape,y.shape,np.unique(y))
​
plt.scatter(X[:,0],X[:,1],c=y)

datasets.make_blobs 是 Python scikit-learn 库中的一个函数,用于生成具有不同形状和尺度的随机中心的多维数据集。这个函数通常用于创建合成数据集,以便进行测试和演示机器学习算法。

算法建模

svc = SVC(kernel = 'linear')#kernel 表示核函数,linear,线性

svc.fit(X,y)
svc.score(X,y)

绘制分割线

w_ = svc.coef_#有两个特征
w_
b_ = svc.intercept_
b_
w = -w_[0,0]/w_[0,1]
w
b, = -b_/w_[0,1]#逗号能将列表中的数取出来
b
sv = svc.support_vectors_
sv
x = np.linspace(-5,1,100)

y_result = w*x+b

plt.scatter(X[:,0],X[:,1],c=y)

plt.plot(x,y_result,color = 'red')
#上边界,下边界
b1 = sv[0][1] - w*sv[0][0]
plt.plot(x,w*x+b1,color = 'blue',ls='--')

b2 =  sv[-1][1] - w*sv[-1][0]
plt.plot(x,w*x+b2,color = 'blue',ls ='--')
相关推荐
fai厅的秃头姐!2 小时前
C语言03
c语言·数据结构·算法
lisanndesu2 小时前
动态规划
算法·动态规划
myprogramc2 小时前
十大排序算法
数据结构·算法·排序算法
记得早睡~2 小时前
leetcode150-逆波兰表达式求值
javascript·算法·leetcode
修己xj2 小时前
算法系列之贪心算法
算法
qy发大财2 小时前
跳跃游戏(力扣55)
算法·leetcode
BingLin-Liu3 小时前
蓝桥杯备考:搜索算法之排列问题
算法·职场和发展·蓝桥杯
计算机小白一个3 小时前
蓝桥杯 Java B 组之岛屿数量、二叉树路径和(区分DFS与回溯)
java·数据结构·算法·蓝桥杯
快下雨了L3 小时前
C++面试笔记(持续更新...)
笔记
curemoon3 小时前
理解都远正态分布中指数项的精度矩阵(协方差逆矩阵)
人工智能·算法·矩阵