24/8/6算法笔记 支持向量机

支持向量机(Support Vector Machine, SVM)是一种监督学习算法,主要用于分类和回归任务。它基于统计学习理论中的结构风险最小化原理,通过找到数据点之间的最优边界来实现模型的泛化能力。

import numpy as np
import matplotlib.pyplot as plt

from sklearn.svm import SVC
from sklearn import datasets


X,y = datasets.make_blobs(n_samples=100,#样本量
                    n_features=2,#二维数据,便于画图展示
                    centers = 2,#两类
                    random_state=3)#随机数状态,固定了
display(X.shape,y.shape,np.unique(y))
​
plt.scatter(X[:,0],X[:,1],c=y)

datasets.make_blobs 是 Python scikit-learn 库中的一个函数,用于生成具有不同形状和尺度的随机中心的多维数据集。这个函数通常用于创建合成数据集,以便进行测试和演示机器学习算法。

算法建模

svc = SVC(kernel = 'linear')#kernel 表示核函数,linear,线性

svc.fit(X,y)
svc.score(X,y)

绘制分割线

w_ = svc.coef_#有两个特征
w_
b_ = svc.intercept_
b_
w = -w_[0,0]/w_[0,1]
w
b, = -b_/w_[0,1]#逗号能将列表中的数取出来
b
sv = svc.support_vectors_
sv
x = np.linspace(-5,1,100)

y_result = w*x+b

plt.scatter(X[:,0],X[:,1],c=y)

plt.plot(x,y_result,color = 'red')
#上边界,下边界
b1 = sv[0][1] - w*sv[0][0]
plt.plot(x,w*x+b1,color = 'blue',ls='--')

b2 =  sv[-1][1] - w*sv[-1][0]
plt.plot(x,w*x+b2,color = 'blue',ls ='--')
相关推荐
Selina K28 分钟前
shell脚本知识点记录
笔记·shell
为什么这亚子30 分钟前
九、Go语言快速入门之map
运维·开发语言·后端·算法·云原生·golang·云计算
40 分钟前
开源竞争-数据驱动成长-11/05-大专生的思考
人工智能·笔记·学习·算法·机器学习
~yY…s<#>1 小时前
【刷题17】最小栈、栈的压入弹出、逆波兰表达式
c语言·数据结构·c++·算法·leetcode
忘梓.1 小时前
划界与分类的艺术:支持向量机(SVM)的深度解析
机器学习·支持向量机·分类
霍格沃兹测试开发学社测试人社区1 小时前
软件测试学习笔记丨Flask操作数据库-数据库和表的管理
软件测试·笔记·测试开发·学习·flask
幸运超级加倍~2 小时前
软件设计师-上午题-16 算法(4-5分)
笔记·算法
yannan201903132 小时前
【算法】(Python)动态规划
python·算法·动态规划
埃菲尔铁塔_CV算法2 小时前
人工智能图像算法:开启视觉新时代的钥匙
人工智能·算法
EasyCVR2 小时前
EHOME视频平台EasyCVR视频融合平台使用OBS进行RTMP推流,WebRTC播放出现抖动、卡顿如何解决?
人工智能·算法·ffmpeg·音视频·webrtc·监控视频接入