24/8/6算法笔记 支持向量机

支持向量机(Support Vector Machine, SVM)是一种监督学习算法,主要用于分类和回归任务。它基于统计学习理论中的结构风险最小化原理,通过找到数据点之间的最优边界来实现模型的泛化能力。

复制代码
import numpy as np
import matplotlib.pyplot as plt

from sklearn.svm import SVC
from sklearn import datasets


X,y = datasets.make_blobs(n_samples=100,#样本量
                    n_features=2,#二维数据,便于画图展示
                    centers = 2,#两类
                    random_state=3)#随机数状态,固定了
display(X.shape,y.shape,np.unique(y))
​
plt.scatter(X[:,0],X[:,1],c=y)

datasets.make_blobs 是 Python scikit-learn 库中的一个函数,用于生成具有不同形状和尺度的随机中心的多维数据集。这个函数通常用于创建合成数据集,以便进行测试和演示机器学习算法。

算法建模

复制代码
svc = SVC(kernel = 'linear')#kernel 表示核函数,linear,线性

svc.fit(X,y)
复制代码
svc.score(X,y)

绘制分割线

复制代码
w_ = svc.coef_#有两个特征
w_
复制代码
b_ = svc.intercept_
b_
复制代码
w = -w_[0,0]/w_[0,1]
w
复制代码
b, = -b_/w_[0,1]#逗号能将列表中的数取出来
b
复制代码
sv = svc.support_vectors_
sv
复制代码
x = np.linspace(-5,1,100)

y_result = w*x+b

plt.scatter(X[:,0],X[:,1],c=y)

plt.plot(x,y_result,color = 'red')
#上边界,下边界
b1 = sv[0][1] - w*sv[0][0]
plt.plot(x,w*x+b1,color = 'blue',ls='--')

b2 =  sv[-1][1] - w*sv[-1][0]
plt.plot(x,w*x+b2,color = 'blue',ls ='--')
相关推荐
xqqxqxxq2 分钟前
Java 集合框架之线性表(List)实现技术笔记
java·笔记·python
暗然而日章33 分钟前
C++基础:Stanford CS106L学习笔记 13 特殊成员函数(SMFs)
c++·笔记·学习
talenteddriver35 分钟前
java: Java8以后hashmap扩容后根据高位确定元素新位置
java·算法·哈希算法
小智RE0-走在路上37 分钟前
Python学习笔记(6)--列表,元组,字符串,序列切片
笔记·python·学习
跨境猫小妹1 小时前
2025 TikTok Shop:从内容爆发到系统化深耕的商业跃迁
大数据·人工智能·算法·产品运营·亚马逊
不穿格子的程序员1 小时前
从零开始写算法 —— 二叉树篇 1:二叉树的三种遍历(递归实现法)
算法·深度优先·二叉树遍历·fds
d111111111d1 小时前
什么是内存对齐?在STM32上面如何通过编辑器指令来实现内存对齐。
笔记·stm32·单片机·嵌入式硬件·学习·编辑器
子夜江寒1 小时前
逻辑森林与贝叶斯算法简介
算法·机器学习
xu_yule2 小时前
算法基础-背包问题(01背包问题)
数据结构·c++·算法·01背包