统计一条cuda ld指令需要经过哪些硬件单元--演示CuAssembler如何修改CUDA SASS指令

统计一条cuda ld指令需要经过哪些硬件单元--演示CuAssembler如何修改CUDA SASS指令

背景 :想统计一条ld指令需要经过哪些硬件单元
步骤:

  • cuda Kernel里只包含一条load指令,但如果没有st会被编译器优化掉(ptx还在,但sass里却没了)
  • 暂时没有找到编译选项关掉该优化
  • 于是采用CuAssembler将ST SASS指令删掉,重新生成fatbin
  • 采用cuModuleLoad加载fatbin,用cuLaunchKernel运行该Kernel

1.准备SASS反汇编工具CuAssembler

bash 复制代码
git clone https://github.com/cloudcores/CuAssembler
export PATH=${PATH}:$PWD/CuAssembler/bin:/usr/local/cuda/bin/
export PYTHONPATH=${PYTHOPATH}:$PWD/CuAssembler/
pip install pyelftools

2.仅包含ld.global.cv.f32的cuda kernel,如果不加st指令,编译器会将ld指令也优化掉。后面手动修改汇编指令删除掉st指令

c 复制代码
tee ptx_ld_inst.cu<<-'EOF'
#include <iostream>
#include <cuda_runtime.h>
__global__ void ptx_ld_inst_kernel(float *input, float *out) {
    float d;
    int tid  = threadIdx.x + blockIdx.x * blockDim.x;
    asm("ld.global.cv.f32 %0, [%1];" : "=f"(d) : "l"(&input[tid]));
    asm("st.global.wt.f32 [%0],%1;" :: "l"(&out[tid]),"f"(d));
}
EOF

3.生成fatbin

bash 复制代码
# 生成ptx
/usr/local/cuda/bin/nvcc -std=c++17 -dc -lineinfo -arch=sm_86 -ptx ptx_ld_inst.cu -o ptx_ld_inst.ptx
# 生成cubin
/usr/local/cuda/bin/nvcc -arch=sm_86 ptx_ld_inst.ptx -cubin -o ptx_ld_inst.cubin
# 生成fatbin
/usr/local/cuda/bin/nvcc -arch=sm_86 ptx_ld_inst.cubin -fatbin -o ptx_ld_inst.fatbin
# 查看ptx
cat ptx_ld_inst.ptx
# 查看sass指令
/usr/local/cuda/bin/cuobjdump --dump-sass ptx_ld_inst.fatbin
# 输出:
	/*0070*/                   LDG.E.STRONG.SYS R3, [R2.64] ;         /* 0x0000000402037981 */
																	  /* 0x000ea2000c1f5900 */
	/*0080*/                   IMAD.WIDE R4, R4, R5, c[0x0][0x168] ;  /* 0x00005a0004047625 */
																	  /* 0x000fca00078e0205 */
	/*0090*/                   STG.E.STRONG.SYS [R4.64], R3 ;         /* 0x0000000304007986 */
																	  /* 0x004fe2000c115904 */
	/*00a0*/                   EXIT ;                                 /* 0x000000000000794d */

4.修改SASS指令,删除掉STG.E.STRONG.SYS指令,重新生成fatbin

bash 复制代码
cuasm.py ptx_ld_inst.cubin ptx_ld_inst.cuasm
cat ptx_ld_inst.cuasm | grep "STG.E.STRONG.SYS"  -B 2
# 输出
      [B------:R-:W2:-:S01]         /*0070*/                   LDG.E.STRONG.SYS R3, desc[UR4][R2.64] ;
      [B------:R-:W-:Y:S05]         /*0080*/                   IMAD.WIDE R4, R4, R5, c[0x0][0x168] ;
      [B--2---:R-:W-:-:S01]         /*0090*/                   STG.E.STRONG.SYS desc[UR4][R4.64], R3 ;

# 删除这二行
sed '/STG.E.STRONG.SYS/d' -i ptx_ld_inst.cuasm
sed '/IMAD.WIDE R4/d' -i ptx_ld_inst.cuasm

# 生新行成cubin
cuasm.py ptx_ld_inst.cuasm
# 生成fatbin
/usr/local/cuda/bin/nvcc -arch=sm_86 ptx_ld_inst.cubin -fatbin -o ptx_ld_inst.fatbin
# 查看sass指令
/usr/local/cuda/bin/cuobjdump --dump-sass ptx_ld_inst.fatbin
输出:
	/*0050*/                   IMAD R4, R3, c[0x0][0x0], R4 ;           /* 0x0000000003047a24 */
																		/* 0x001fc800078e0204 */
	/*0060*/                   IMAD.WIDE R2, R4, R5, c[0x0][0x160] ;    /* 0x0000580004027625 */
																		/* 0x000fcc00078e0205 */
	/*0070*/                   LDG.E.STRONG.SYS R3, desc[UR4][R2.64] ;  /* 0x0000000402037981 */
																		/* 0x000ea2200c1f5900 */
	/*0080*/                   EXIT ;                                   /* 0x000000000000794d */

5.准备测试程序,加载fatbin并运行里面的Kernel

bash 复制代码
tee ptx_ld_inst_main.cpp<<-'EOF'
#include <stdio.h>
#include <string.h>
#include <cuda_runtime.h>
#include <cuda.h>

int main(int argc,char *argv[])
{
    CUresult error;
    CUdevice cuDevice;
    cuInit(0);
    int deviceCount = 0;
    error = cuDeviceGetCount(&deviceCount);
    error = cuDeviceGet(&cuDevice, 0);
    if(error!=CUDA_SUCCESS)
        {
        printf("Error happened in get device!\n");
    }
    CUcontext cuContext;
    error = cuCtxCreate(&cuContext, 0, cuDevice);
    if(error!=CUDA_SUCCESS)
        {
        printf("Error happened in create context!\n");
    }

    CUmodule module;
    CUfunction function;

    const char* module_file = "ptx_ld_inst.fatbin";
    const char* kernel_name = "_Z18ptx_ld_inst_kernelPfS_";

    error = cuModuleLoad(&module, module_file);
    if(error!=CUDA_SUCCESS)
        {
        printf("Error happened in load moudle %d!\n",error);
    }

    error = cuModuleGetFunction(&function, module, kernel_name);
    if(error!=CUDA_SUCCESS)
    {
        printf("get function error!\n");
    }

    int data_size=sizeof(float)*8192;

    float *output_ptr=nullptr;
    float *input_ptr=nullptr;
    int cudaStatus=0;

    cudaStatus = cudaMalloc((void**)&input_ptr, data_size);
    cudaStatus = cudaMalloc((void**)&output_ptr, data_size);

    void *kernelParams[]= {(void*)&output_ptr, (void*)&input_ptr};
    cuLaunchKernel(function,
                    1, 1, 1,
                    32, 1, 1,
                    0,0,kernelParams, 0);
    cudaFree(output_ptr);
    cudaFree(input_ptr);
    cuModuleUnload(module);
    cuCtxDestroy(cuContext);
    return 0;
}
EOF
g++ ptx_ld_inst_main.cpp -o ptx_ld_inst_main -I /usr/local/cuda/include -L /usr/local/cuda/lib64 -lcudart -lcuda

6.ncu profing

bash 复制代码
/usr/local/NVIDIA-Nsight-Compute/ncu --set full --section SpeedOfLight_HierarchicalTensorRooflineChart \
                --target-processes all --clock-control=none \
                --print-details all --export ncu_report_ptx_ld_inst -f ./ptx_ld_inst_main
				
/usr/local/NVIDIA-Nsight-Compute/ncu --metrics \
l1tex__average_t_sectors_per_request_pipe_lsu_mem_global_op_ld.max_rate,\
l1tex__average_t_sectors_per_request_pipe_lsu_mem_global_op_ld.pct,\
l1tex__average_t_sectors_per_request_pipe_lsu_mem_global_op_ld.ratio,\
l1tex__data_bank_conflicts_pipe_lsu_mem_global_op_ld.max,\
l1tex__m_xbar2l1tex_read_bytes_mem_lg_op_ld.max,\
l1tex__m_xbar2l1tex_read_sectors_mem_lg_op_ld.max,\
l1tex__t_bytes_pipe_lsu_mem_global_op_ld.max,\
l1tex__t_bytes_pipe_lsu_mem_global_op_ld_lookup_miss.max,\
l1tex__t_output_wavefronts_pipe_lsu_mem_global_op_ld.max,\
l1tex__t_requests_pipe_lsu_mem_global_op_ld.max,\
l1tex__t_sectors_pipe_lsu_mem_global_op_ld.max,\
l1tex__t_sectors_pipe_lsu_mem_global_op_ld_lookup_miss.max,\
l1tex__t_set_accesses_pipe_lsu_mem_global_op_ld.max,\
l1tex__t_set_conflicts_pipe_lsu_mem_global_op_ld.max,\
sm__sass_data_bytes_mem_global_op_ld.max,\
sm__sass_inst_executed_op_global_ld.max,\
sm__sass_inst_executed_op_ld.max,\
sm__sass_l1tex_t_sectors_pipe_lsu_mem_global_op_ld.max,\
smsp__inst_executed_op_global_ld.max,\
smsp__inst_executed_op_global_ld_pred_on_any.max,\
smsp__sass_average_data_bytes_per_sector_mem_global_op_ld.max_rate,\
smsp__sass_average_data_bytes_per_sector_mem_global_op_ld.pct,\
smsp__sass_average_data_bytes_per_sector_mem_global_op_ld.ratio,\
smsp__sass_data_bytes_mem_global_op_ld.max,\
smsp__sass_inst_executed_op_global_ld.max,\
smsp__sass_inst_executed_op_ld.max,\
smsp__sass_l1tex_t_sectors_pipe_lsu_mem_global_op_ld.max  ./ptx_ld_inst_main

输出

bash 复制代码
 ----------------------------------------------------------------------- ----------- ------------
 Metric Name                                                             Metric Unit Metric Value
 ----------------------------------------------------------------------- ----------- ------------
 l1tex__average_t_sectors_per_request_pipe_lsu_mem_global_op_ld.max_rate    sector/1           32
 l1tex__average_t_sectors_per_request_pipe_lsu_mem_global_op_ld.pct                %        12.50
 l1tex__average_t_sectors_per_request_pipe_lsu_mem_global_op_ld.ratio       sector/1            4
 l1tex__data_bank_conflicts_pipe_lsu_mem_global_op_ld.max                                       0
 l1tex__m_xbar2l1tex_read_bytes_mem_lg_op_ld.max                                byte          128
 l1tex__m_xbar2l1tex_read_sectors_mem_lg_op_ld.max                            sector            4
 l1tex__t_bytes_pipe_lsu_mem_global_op_ld.max                                   byte          128
 l1tex__t_bytes_pipe_lsu_mem_global_op_ld_lookup_miss.max                       byte          128
 l1tex__t_output_wavefronts_pipe_lsu_mem_global_op_ld.max                                       1
 l1tex__t_requests_pipe_lsu_mem_global_op_ld.max                                                1
 l1tex__t_sectors_pipe_lsu_mem_global_op_ld.max                               sector            4
 l1tex__t_sectors_pipe_lsu_mem_global_op_ld_lookup_miss.max                   sector            4
 l1tex__t_set_accesses_pipe_lsu_mem_global_op_ld.max                                            1
 l1tex__t_set_conflicts_pipe_lsu_mem_global_op_ld.max                          cycle            0
 sm__sass_data_bytes_mem_global_op_ld.max                                       byte          128
 sm__sass_inst_executed_op_global_ld.max                                        inst            1
 sm__sass_inst_executed_op_ld.max                                               inst            1
 sm__sass_l1tex_t_sectors_pipe_lsu_mem_global_op_ld.max                       sector            4
 smsp__inst_executed_op_global_ld.max                                           inst            1
 smsp__inst_executed_op_global_ld_pred_on_any.max                               inst            1
 smsp__sass_average_data_bytes_per_sector_mem_global_op_ld.max_rate      byte/sector           32
 smsp__sass_average_data_bytes_per_sector_mem_global_op_ld.pct                     %          100
 smsp__sass_average_data_bytes_per_sector_mem_global_op_ld.ratio         byte/sector           32
 smsp__sass_data_bytes_mem_global_op_ld.max                                     byte          128
 smsp__sass_inst_executed_op_global_ld.max                                      inst            1
 smsp__sass_inst_executed_op_ld.max                                             inst            1
 smsp__sass_l1tex_t_sectors_pipe_lsu_mem_global_op_ld.max                     sector            4
 ----------------------------------------------------------------------- ----------- ------------

7.获取NCU支持的metrics列表

bash 复制代码
/usr/local/NVIDIA-Nsight-Compute/ncu --query-metrics \
	--csv | awk -F, '{print $1}' | sed 's/"//g' | tail -n +2 > metrics.txt

8.查询每个metrics

bash 复制代码
tee get_metrics.sh<<-'EOF'
rm -f ptx_ld_inst_metrics.txt
for line in `cat metrics.txt`
do
    /usr/local/NVIDIA-Nsight-Compute/ncu --metrics $line \
    ./ptx_ld_inst_main 2>&1 | grep "$line" | grep -v "n/a" | tee -a "ptx_ld_inst_metrics.txt"
    /usr/local/NVIDIA-Nsight-Compute/ncu --metrics $line \
    ./ptx_ld_inst_main 2>&1 | grep "$line" | grep -v "n/a" | tee -a "ptx_ld_inst_metrics.txt"
done
EOF
bash get_metrics.sh

9.过滤掉值为0的metrics

相关推荐
深度学习实战训练营1 小时前
基于CNN-RNN的影像报告生成
人工智能·深度学习
昨日之日20063 小时前
Moonshine - 新型开源ASR(语音识别)模型,体积小,速度快,比OpenAI Whisper快五倍 本地一键整合包下载
人工智能·whisper·语音识别
浮生如梦_3 小时前
Halcon基于laws纹理特征的SVM分类
图像处理·人工智能·算法·支持向量机·计算机视觉·分类·视觉检测
深度学习lover3 小时前
<项目代码>YOLOv8 苹果腐烂识别<目标检测>
人工智能·python·yolo·目标检测·计算机视觉·苹果腐烂识别
热爱跑步的恒川4 小时前
【论文复现】基于图卷积网络的轻量化推荐模型
网络·人工智能·开源·aigc·ai编程
阡之尘埃6 小时前
Python数据分析案例61——信贷风控评分卡模型(A卡)(scorecardpy 全面解析)
人工智能·python·机器学习·数据分析·智能风控·信贷风控
前端青山7 小时前
Node.js-增强 API 安全性和性能优化
开发语言·前端·javascript·性能优化·前端框架·node.js
孙同学要努力8 小时前
全连接神经网络案例——手写数字识别
人工智能·深度学习·神经网络
Eric.Lee20218 小时前
yolo v5 开源项目
人工智能·yolo·目标检测·计算机视觉
其实吧39 小时前
基于Matlab的图像融合研究设计
人工智能·计算机视觉·matlab