【计算机科学的数学基础】递归

递归

递归的思维方式

找出递归结构(借助第 n − 1 n-1 n−1步来解决第 n n n步) → \rightarrow →建立递推公式

递归和归纳,只是方向不同。"从一般性前提退出个别性结论"的是递归的思想。而"从个别性前提推出一般性结论"的是归纳的思想。

阶乘

n ! = { 1 , ( n = 0 时 ) n × ( n − 1 ) ! , ( n = 1 , 2 , 3 , ⋯ 时 ) n!=\begin{cases} 1, & (n=0时) \\ n \times (n-1)!, & (n=1,2,3, \cdots 时) \end{cases} n!={1,n×(n−1)!,(n=0时)(n=1,2,3,⋯时)

上面这个定义之所以能成立,下面两个方面缺一不可:

  • 阶乘 n ! n! n!由阶乘 ( n − 1 ) ! (n-1)! (n−1)!来定义
  • n = 0 n=0 n=0时的阶乘结果确定为1

斐波那契数列

问:有一种动物,它出生2天后就开始以每天1只的速度繁殖后代。假设在第1天有1只这样的动物(该动物刚出生,从第3天起繁殖后代)。那么到第 n n n天,这样的动物共有多少只?

解:在第 n n n天,

  • 第 n − 1 n-1 n−1天出生的动物,在第 n n n天都还活着
  • 第 n − 2 n-2 n−2天以前出生的动物,在第 n n n天会繁殖1个后代

若设第 n n n天的动物总是为 F ( n ) F(n) F(n),则
F ( n ) = { 0 , ( n = 0 时 ) 1 , ( n = 1 时 ) F ( n − 1 ) + F ( n − 2 ) , ( n = 2 , 3 , 4 , ⋯ 时 ) F(n)=\begin{cases} 0, & (n=0时) \\ 1, & (n=1时) \\ F(n-1)+F(n-2), & (n=2, 3, 4, \cdots 时) \end{cases} F(n)=⎩ ⎨ ⎧0,1,F(n−1)+F(n−2),(n=0时)(n=1时)(n=2,3,4,⋯时)

将结果排列成数列可得: 0 , 1 , 1 , 2 , 3 , 5 , 8 , 13 , 21 , 34 , 55 , 89 , ⋯ 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, \cdots 0,1,1,2,3,5,8,13,21,34,55,89,⋯

斐波那契数列

递归的其他例子

杨辉三角

其实杨辉三角就是组合数:

即: C n k = C n − 1 k − 1 + C n − 1 k C_n^k=C_{n-1}^{k-1}+C_{n-1}^{k} Cnk=Cn−1k−1+Cn−1k

谢尔平斯基三角形

它其实就是将杨辉三角中的奇数和偶数分别上黑白2种颜色的结果:

相关推荐
天赐学c语言18 小时前
1.20 - x的平方根 && vector的扩容机制以及删除元素是否会释放内存
c++·算法·leecode
AI_零食19 小时前
鸿蒙跨端框架 Flutter 学习 Day 6:异步编程:等待的艺术
学习·flutter·华为·交互·harmonyos·鸿蒙
梁洪飞19 小时前
通过链接文件和Start.S学习armv7
linux·arm开发·嵌入式硬件·学习·arm
52Hz11819 小时前
力扣24.两两交换链表中的节点、25.K个一组反转链表
算法·leetcode·链表
小赵还有头发19 小时前
安装Ceres与glog
linux·学习·无人机·ceres·glog
老鼠只爱大米19 小时前
LeetCode经典算法面试题 #160:相交链表(双指针法、长度差法等多种方法详细解析)
算法·leetcode·链表·双指针·相交链表·长度差法
ValhallaCoder20 小时前
Day53-图论
数据结构·python·算法·图论
老鼠只爱大米20 小时前
LeetCode经典算法面试题 #84:柱状图中最大的矩形(单调栈、分治法等四种方法详细解析)
算法·leetcode·动态规划·单调栈·分治法·柱状图最大矩形
C雨后彩虹20 小时前
羊、狼、农夫过河
java·数据结构·算法·华为·面试
Engineer邓祥浩20 小时前
设计模式学习(16) 23-14 命令模式
学习·设计模式·命令模式