回归评价指标

这里写目录标题

  • [1. 均方误差MSE](#1. 均方误差MSE)
  • [2. 均方根误差RMSE](#2. 均方根误差RMSE)
  • [3. 平均绝对误差MAE](#3. 平均绝对误差MAE)
  • [4. R^2^](#4. R2)
  • [5. 调整后R^2^](#5. 调整后R2)

1. 均方误差MSE

  • 回归数据和原始数据误差的平方和/原始数据个数
  • 平方的原因:不平方正负误差会抵消,对大误差更为敏感,在一些场景下更能凸显出模型预测的不准确性
  • 越接近于0,模型预测能力越强

2. 均方根误差RMSE

  • MSE开根号
  • 越接近与0,模型的预测能力越强

3. 平均绝对误差MAE

  • MSE的平方换成绝对值,也是不绝对值正负误差会抵消
  • MAE越小,模型预测精度越高,对较大误差不如MSE 敏感
  • MAE可以准确反映实际预测误差的大小

4. R2

  • TSS:样本点和均值间的差异性(数据集中数的分散程度)
  • RSS:和拟合数据间的差异性
  • R2 = 1- RSS/TSS
  • 取值范围为[0,1]:
  • 如果结果是 0,说明模型拟合效果很差;
    如果结果是 1,说明模型无错误。
  • 一般来说,R-Squared 越大,表示模型拟合效果越好。R-Squared 反映的是大概有多准,因为,随着样本数量的增加,R-Square必然增加,无法真正定量说明准确程度,只能大概定量

5. 调整后R2

https://www.bilibili.com/video/BV1wi4y157Tt/?vd_source=f8471cd815546af5608f92c27e8247c2

相关推荐
有Li13 小时前
基于深度学习的数字切片扫描仪无标记虚拟染色与人体组织分类|文献速递-文献分享
论文阅读·人工智能·深度学习·分类·医学生
东坡肘子13 小时前
挖掘“沉默的专家” -- 肘子的 Swift 周报 #114
人工智能·swiftui·swift
chase。13 小时前
【学习笔记】线性复杂度微分逆运动学:增广拉格朗日视角深度解析
人工智能·笔记·学习
晨非辰13 小时前
C++ 波澜壮阔 40 年:引用、内联函数与现代空指针,效率跃升三基石
运维·c++·人工智能·后端·python·深度学习
七夜zippoe13 小时前
轻量模型推理性能优化实战:让AI在终端设备上“飞”起来
人工智能·知识蒸馏·轻量模型·量化感知
咚咚王者13 小时前
人工智能之数据分析 Pandas:第八章 数据可视化
人工智能·数据分析·pandas
草莓熊Lotso13 小时前
企业级 Git 分支管理模型实战:从 Git Flow 到 DevOps 落地
运维·服务器·开发语言·c++·人工智能·git·devops
艾莉丝努力练剑13 小时前
【Python基础:语法第四课】列表和元组——Python 里的“爱情”:列表善变,元组长情
大数据·人工智能·windows·python·安全·pycharm·编辑器
海域云-罗鹏13 小时前
科技企业AI大模型部署指南:从算力搭建到价值落地
人工智能·科技
smilejingwei13 小时前
工业 AI 监盘发现异常实践
人工智能·工业ai·监盘