回归评价指标

这里写目录标题

  • [1. 均方误差MSE](#1. 均方误差MSE)
  • [2. 均方根误差RMSE](#2. 均方根误差RMSE)
  • [3. 平均绝对误差MAE](#3. 平均绝对误差MAE)
  • [4. R^2^](#4. R2)
  • [5. 调整后R^2^](#5. 调整后R2)

1. 均方误差MSE

  • 回归数据和原始数据误差的平方和/原始数据个数
  • 平方的原因:不平方正负误差会抵消,对大误差更为敏感,在一些场景下更能凸显出模型预测的不准确性
  • 越接近于0,模型预测能力越强

2. 均方根误差RMSE

  • MSE开根号
  • 越接近与0,模型的预测能力越强

3. 平均绝对误差MAE

  • MSE的平方换成绝对值,也是不绝对值正负误差会抵消
  • MAE越小,模型预测精度越高,对较大误差不如MSE 敏感
  • MAE可以准确反映实际预测误差的大小

4. R2

  • TSS:样本点和均值间的差异性(数据集中数的分散程度)
  • RSS:和拟合数据间的差异性
  • R2 = 1- RSS/TSS
  • 取值范围为[0,1]:
  • 如果结果是 0,说明模型拟合效果很差;
    如果结果是 1,说明模型无错误。
  • 一般来说,R-Squared 越大,表示模型拟合效果越好。R-Squared 反映的是大概有多准,因为,随着样本数量的增加,R-Square必然增加,无法真正定量说明准确程度,只能大概定量

5. 调整后R2

https://www.bilibili.com/video/BV1wi4y157Tt/?vd_source=f8471cd815546af5608f92c27e8247c2

相关推荐
小和尚同志1 分钟前
10k star!各大 AI 应用系统提示词集合
人工智能·开源·aigc
刘媚-海外2 分钟前
Go语言开发AI应用
开发语言·人工智能·golang·go
Blossom.11814 分钟前
从“能写”到“能干活”:大模型工具调用(Function-Calling)的工程化落地指南
数据库·人工智能·python·深度学习·机器学习·计算机视觉·oracle
Memene摸鱼日报43 分钟前
「Memene 摸鱼日报 2025.9.12」前OpenAI CTO 公司发布首篇技术博客,Qwen-Next 80B 发布,Kimi 开源轻量级中间件
人工智能·agi
飞哥数智坊1 小时前
CodeBuddy CLI 实测:比 Claude Code 稚嫩,但我感觉值得期待
人工智能·ai编程
电商软件开发 小银1 小时前
本地生活服务平台创新模式观察:积分体系如何重塑消费生态?
大数据·人工智能·数字化转型·私域运营·消费者心理学
扬帆起航131 小时前
亚马逊新品推广破局指南:从手动试错到智能闭环的系统化路径
大数据·数据库·人工智能
小王爱学人工智能1 小时前
利用OpenCV进行指纹识别的案例
人工智能·opencv·计算机视觉
代码AI弗森1 小时前
DPO 深度解析:从公式到工程,从偏好数据到可复用训练管线
人工智能
Elastic 中国社区官方博客1 小时前
使用 LangExtract 和 Elasticsearch
大数据·人工智能·elasticsearch·搜索引擎·ai·信息可视化·全文检索