回归评价指标

这里写目录标题

  • [1. 均方误差MSE](#1. 均方误差MSE)
  • [2. 均方根误差RMSE](#2. 均方根误差RMSE)
  • [3. 平均绝对误差MAE](#3. 平均绝对误差MAE)
  • [4. R^2^](#4. R2)
  • [5. 调整后R^2^](#5. 调整后R2)

1. 均方误差MSE

  • 回归数据和原始数据误差的平方和/原始数据个数
  • 平方的原因:不平方正负误差会抵消,对大误差更为敏感,在一些场景下更能凸显出模型预测的不准确性
  • 越接近于0,模型预测能力越强

2. 均方根误差RMSE

  • MSE开根号
  • 越接近与0,模型的预测能力越强

3. 平均绝对误差MAE

  • MSE的平方换成绝对值,也是不绝对值正负误差会抵消
  • MAE越小,模型预测精度越高,对较大误差不如MSE 敏感
  • MAE可以准确反映实际预测误差的大小

4. R2

  • TSS:样本点和均值间的差异性(数据集中数的分散程度)
  • RSS:和拟合数据间的差异性
  • R2 = 1- RSS/TSS
  • 取值范围为[0,1]:
  • 如果结果是 0,说明模型拟合效果很差;
    如果结果是 1,说明模型无错误。
  • 一般来说,R-Squared 越大,表示模型拟合效果越好。R-Squared 反映的是大概有多准,因为,随着样本数量的增加,R-Square必然增加,无法真正定量说明准确程度,只能大概定量

5. 调整后R2

https://www.bilibili.com/video/BV1wi4y157Tt/?vd_source=f8471cd815546af5608f92c27e8247c2

相关推荐
汗流浃背了吧,老弟!几秒前
基于 BERT 的指令微调
人工智能·深度学习·bert
Jerryhut4 分钟前
Opencv总结8——停车场项目实战
人工智能·opencv·计算机视觉
WWZZ20254 分钟前
SLAM进阶——数据集
人工智能·计算机视觉·机器人·大模型·slam·具身智能
、BeYourself5 分钟前
PGvector :在 Spring AI 中实现向量数据库存储与相似性搜索
数据库·人工智能·spring·springai
墨_浅-7 分钟前
分阶段训练金融大模型02-百度千帆实际步骤
人工智能·金融·百度云
明天好,会的9 分钟前
分形生成实验(三):Rust强类型驱动的后端分步实现与编译时契约
开发语言·人工智能·后端·rust
甄心爱学习11 分钟前
计算机视觉-特征提取,特征点提取与描述,图像分割
人工智能·计算机视觉
雷焰财经12 分钟前
科技普惠,织就乡村智慧网:中和农信赋能农业现代化新实践
人工智能·科技
草莓熊Lotso18 分钟前
Python 库使用全攻略:从标准库到第三方库(附实战案例)
运维·服务器·汇编·人工智能·经验分享·git·python
LDG_AGI25 分钟前
【推荐系统】深度学习训练框架(二十二):PyTorch2.5 + TorchRec1.0超大规模模型分布式推理实战
人工智能·分布式·深度学习