回归评价指标

这里写目录标题

  • [1. 均方误差MSE](#1. 均方误差MSE)
  • [2. 均方根误差RMSE](#2. 均方根误差RMSE)
  • [3. 平均绝对误差MAE](#3. 平均绝对误差MAE)
  • [4. R^2^](#4. R2)
  • [5. 调整后R^2^](#5. 调整后R2)

1. 均方误差MSE

  • 回归数据和原始数据误差的平方和/原始数据个数
  • 平方的原因:不平方正负误差会抵消,对大误差更为敏感,在一些场景下更能凸显出模型预测的不准确性
  • 越接近于0,模型预测能力越强

2. 均方根误差RMSE

  • MSE开根号
  • 越接近与0,模型的预测能力越强

3. 平均绝对误差MAE

  • MSE的平方换成绝对值,也是不绝对值正负误差会抵消
  • MAE越小,模型预测精度越高,对较大误差不如MSE 敏感
  • MAE可以准确反映实际预测误差的大小

4. R2

  • TSS:样本点和均值间的差异性(数据集中数的分散程度)
  • RSS:和拟合数据间的差异性
  • R2 = 1- RSS/TSS
  • 取值范围为[0,1]:
  • 如果结果是 0,说明模型拟合效果很差;
    如果结果是 1,说明模型无错误。
  • 一般来说,R-Squared 越大,表示模型拟合效果越好。R-Squared 反映的是大概有多准,因为,随着样本数量的增加,R-Square必然增加,无法真正定量说明准确程度,只能大概定量

5. 调整后R2

https://www.bilibili.com/video/BV1wi4y157Tt/?vd_source=f8471cd815546af5608f92c27e8247c2

相关推荐
每天一个java小知识2 分钟前
AI Agent
人工智能
猫头虎13 分钟前
如何解决 pip install 编译报错 fatal error: hdf5.h: No such file or directory(h5py)问题
人工智能·python·pycharm·开源·beautifulsoup·ai编程·pip
龙赤子13 分钟前
人工智能AI的大框架
人工智能
比奥利奥还傲.17 分钟前
本地+AI+大模型自由用!Cherry+Studio打破局域网限制
人工智能
雪碧聊技术18 分钟前
深度学习、机器学习、人工智能三者的关系
人工智能·深度学习·机器学习
β添砖java19 分钟前
机器学习初级
人工智能·机器学习
陈奕昆24 分钟前
n8n实战营Day3:电商订单全流程自动化·需求分析与流程拆解
大数据·开发语言·人工智能·自动化·需求分析·n8n
努力改掉拖延症的小白25 分钟前
Intel笔记本也能部署大模型(利用Ultra系列gpu通过优化版ollama实现)
人工智能·ai·语言模型·大模型
优爱蛋白26 分钟前
B细胞细胞因子:免疫系统的“信使军团“与疾病治疗的新前沿
人工智能·经验分享·健康医疗
陈奕昆34 分钟前
n8n实战营Day1课时3:高频节点解析+Webhook表单同步Excel实操
人工智能·python·n8n