回归评价指标

这里写目录标题

  • [1. 均方误差MSE](#1. 均方误差MSE)
  • [2. 均方根误差RMSE](#2. 均方根误差RMSE)
  • [3. 平均绝对误差MAE](#3. 平均绝对误差MAE)
  • [4. R^2^](#4. R2)
  • [5. 调整后R^2^](#5. 调整后R2)

1. 均方误差MSE

  • 回归数据和原始数据误差的平方和/原始数据个数
  • 平方的原因:不平方正负误差会抵消,对大误差更为敏感,在一些场景下更能凸显出模型预测的不准确性
  • 越接近于0,模型预测能力越强

2. 均方根误差RMSE

  • MSE开根号
  • 越接近与0,模型的预测能力越强

3. 平均绝对误差MAE

  • MSE的平方换成绝对值,也是不绝对值正负误差会抵消
  • MAE越小,模型预测精度越高,对较大误差不如MSE 敏感
  • MAE可以准确反映实际预测误差的大小

4. R2

  • TSS:样本点和均值间的差异性(数据集中数的分散程度)
  • RSS:和拟合数据间的差异性
  • R2 = 1- RSS/TSS
  • 取值范围为[0,1]:
  • 如果结果是 0,说明模型拟合效果很差;
    如果结果是 1,说明模型无错误。
  • 一般来说,R-Squared 越大,表示模型拟合效果越好。R-Squared 反映的是大概有多准,因为,随着样本数量的增加,R-Square必然增加,无法真正定量说明准确程度,只能大概定量

5. 调整后R2

https://www.bilibili.com/video/BV1wi4y157Tt/?vd_source=f8471cd815546af5608f92c27e8247c2

相关推荐
时见先生6 小时前
Python库和conda搭建虚拟环境
开发语言·人工智能·python·自然语言处理·conda
昨夜见军贴06168 小时前
IACheck AI审核在生产型企业质量控制记录中的实践探索——全面赋能有关物质研究合规升级
大数据·人工智能
智星云算力8 小时前
智星云镜像共享全流程指南,附避坑手册(新手必看)
人工智能
盖雅工场9 小时前
驱动千店销售转化提升10%:3C零售门店的人效优化实战方案
大数据·人工智能·零售·数字化管理·智能排班·零售排班
Loo国昌9 小时前
深入理解 FastAPI:Python高性能API框架的完整指南
开发语言·人工智能·后端·python·langchain·fastapi
发哥来了9 小时前
【AI视频创作】【评测】【核心能力与成本效益】
大数据·人工智能
醉舞经阁半卷书19 小时前
Python机器学习常用库快速精通
人工智能·python·深度学习·机器学习·数据挖掘·数据分析·scikit-learn
产品何同学10 小时前
在线问诊医疗APP如何设计?2套原型拆解与AI生成原型图实战
人工智能·产品经理·健康医疗·在线问诊·app原型·ai生成原型图·医疗app
星爷AG I10 小时前
9-14 知觉整合(AGI基础理论)
人工智能·agi
开源技术10 小时前
Violit: Streamlit杀手,无需全局刷新,构建AI面板
人工智能·python