回归评价指标

这里写目录标题

  • [1. 均方误差MSE](#1. 均方误差MSE)
  • [2. 均方根误差RMSE](#2. 均方根误差RMSE)
  • [3. 平均绝对误差MAE](#3. 平均绝对误差MAE)
  • [4. R^2^](#4. R2)
  • [5. 调整后R^2^](#5. 调整后R2)

1. 均方误差MSE

  • 回归数据和原始数据误差的平方和/原始数据个数
  • 平方的原因:不平方正负误差会抵消,对大误差更为敏感,在一些场景下更能凸显出模型预测的不准确性
  • 越接近于0,模型预测能力越强

2. 均方根误差RMSE

  • MSE开根号
  • 越接近与0,模型的预测能力越强

3. 平均绝对误差MAE

  • MSE的平方换成绝对值,也是不绝对值正负误差会抵消
  • MAE越小,模型预测精度越高,对较大误差不如MSE 敏感
  • MAE可以准确反映实际预测误差的大小

4. R2

  • TSS:样本点和均值间的差异性(数据集中数的分散程度)
  • RSS:和拟合数据间的差异性
  • R2 = 1- RSS/TSS
  • 取值范围为[0,1]:
  • 如果结果是 0,说明模型拟合效果很差;
    如果结果是 1,说明模型无错误。
  • 一般来说,R-Squared 越大,表示模型拟合效果越好。R-Squared 反映的是大概有多准,因为,随着样本数量的增加,R-Square必然增加,无法真正定量说明准确程度,只能大概定量

5. 调整后R2

https://www.bilibili.com/video/BV1wi4y157Tt/?vd_source=f8471cd815546af5608f92c27e8247c2

相关推荐
2501_941329725 分钟前
【AI】使用YOLO11-C3k2-LFEM模型实现车窗识别,精准定位车辆玻璃区域,智能驾驶辅助系统必备技术_1
人工智能
蘑菇物联13 分钟前
厂区大、公辅车间分散、怎么管?
人工智能·科技
七牛云行业应用15 分钟前
3.5s降至0.4s!Claude Code生产级连接优化与Agent实战
运维·人工智能·大模型·aigc·claude
微软技术分享19 分钟前
Windows 环境下 llama.cpp 编译 + Qwen 模型本地部署全指南
人工智能
2501_9453184927 分钟前
CAIE证书是否可查、可验证?
人工智能
weixin_4166600728 分钟前
技术分析:豆包生成带公式文案导出Word乱码的底层机理
人工智能·word·豆包
爱吃泡芙的小白白32 分钟前
深入浅出:卷积神经网络(CNN)池化层全解析——从MaxPool到前沿发展
人工智能·神经网络·cnn·池化层·最大值池化·平均值池化
jigsaw_zyx38 分钟前
提示词工程
人工智能·算法
jdyzzy42 分钟前
什么是 JIT 精益生产模式?它与传统的生产管控方式有何不同?
java·大数据·人工智能·jit