回归评价指标

这里写目录标题

  • [1. 均方误差MSE](#1. 均方误差MSE)
  • [2. 均方根误差RMSE](#2. 均方根误差RMSE)
  • [3. 平均绝对误差MAE](#3. 平均绝对误差MAE)
  • [4. R^2^](#4. R2)
  • [5. 调整后R^2^](#5. 调整后R2)

1. 均方误差MSE

  • 回归数据和原始数据误差的平方和/原始数据个数
  • 平方的原因:不平方正负误差会抵消,对大误差更为敏感,在一些场景下更能凸显出模型预测的不准确性
  • 越接近于0,模型预测能力越强

2. 均方根误差RMSE

  • MSE开根号
  • 越接近与0,模型的预测能力越强

3. 平均绝对误差MAE

  • MSE的平方换成绝对值,也是不绝对值正负误差会抵消
  • MAE越小,模型预测精度越高,对较大误差不如MSE 敏感
  • MAE可以准确反映实际预测误差的大小

4. R2

  • TSS:样本点和均值间的差异性(数据集中数的分散程度)
  • RSS:和拟合数据间的差异性
  • R2 = 1- RSS/TSS
  • 取值范围为[0,1]:
  • 如果结果是 0,说明模型拟合效果很差;
    如果结果是 1,说明模型无错误。
  • 一般来说,R-Squared 越大,表示模型拟合效果越好。R-Squared 反映的是大概有多准,因为,随着样本数量的增加,R-Square必然增加,无法真正定量说明准确程度,只能大概定量

5. 调整后R2

https://www.bilibili.com/video/BV1wi4y157Tt/?vd_source=f8471cd815546af5608f92c27e8247c2

相关推荐
BagMM15 分钟前
DetLH论文阅读
人工智能·计算机视觉·目标跟踪
fundroid27 分钟前
Androidify:谷歌官方 AI + Android 开源示例应用
android·人工智能·开源
居然JuRan37 分钟前
大模型瘦身术:量化与蒸馏技术全解析
人工智能
艾莉丝努力练剑39 分钟前
【优选算法必刷100题】第031~32题(前缀和算法):连续数组、矩阵区域和
大数据·人工智能·线性代数·算法·矩阵·二维前缀和
不去幼儿园1 小时前
【启发式算法】灰狼优化算法(Grey Wolf Optimizer, GWO)详细介绍(Python)
人工智能·python·算法·机器学习·启发式算法
remaindertime1 小时前
基于Ollama和Spring AI:实现本地大模型对话与 RAG 功能
人工智能·后端·ai编程
y***54881 小时前
Vue语音识别开发
人工智能·语音识别
sdjnled2291 小时前
山东裸眼3D立体LED显示屏专业服务商
人工智能·3d
大数据魔法师2 小时前
分类与回归算法(五)- 决策树分类
决策树·分类·回归
忘却的旋律dw2 小时前
使用LLM模型的tokenizer报错AttributeError: ‘dict‘ object has no attribute ‘model_type‘
人工智能·pytorch·python