吴恩达机器学习 笔记四十二 基于内容过滤的深度学习

在电影评分的案例中,基于内容过滤的方法需要用到两个向量,一个是来自用户的特征向量Vu,另一个是电影特征的向量 Vm。以用户的特征为例,原始的向量Xu作为一个神经网络的输入,经过几层之后输出一个有32个单元的向量Vu,电影的特征向量也通过神经网络,注意两个网络的层数、隐藏单元数可能不同,但最后输出的维度必须相同。最后做出的预测为Vv点乘Vm,也可以加一个sigmoid函数来预测 y 为1的概率(user j , movie i)。

也可以把两个网络放在一起,成本函数如下,用这个成本函数,通过Vu点乘Vm的好坏来调节两个网络的参数,也可以在后面加上像神经网络一样的正则化项。这种组合两个网络的能力也是神经网络强大的原因之一。

也可以找到类似的电影,Vkm和Vim之间的距离小,则电影 k 和电影 i 是相似的,这个过程就像协同过滤中找到相似的用户。注意,可以提前计算电影的相似性,可以在前一天晚上计算好,第二天用户浏览时直接拿来推荐相似的电影。

相关推荐
肖永威4 分钟前
macOS环境安装/卸载python实践笔记
笔记·python·macos
暗光之痕28 分钟前
Unreal5研究笔记 Actor的生命周期函数
笔记·unreal engine
Gain_chance38 分钟前
35-学习笔记尚硅谷数仓搭建-DWS层最近n日汇总表及历史至今汇总表建表语句
数据库·数据仓库·hive·笔记·学习
宵时待雨1 小时前
STM32笔记归纳9:定时器
笔记·stm32·单片机·嵌入式硬件
pp起床1 小时前
Gen_AI 补充内容 Logit Lens 和 Patchscopes
人工智能·深度学习·机器学习
m0_719084112 小时前
React笔记张天禹
前端·笔记·react.js
阿杰学AI2 小时前
AI核心知识91——大语言模型之 Transformer 架构(简洁且通俗易懂版)
人工智能·深度学习·ai·语言模型·自然语言处理·aigc·transformer
芷栀夏2 小时前
CANN ops-math:筑牢 AI 神经网络底层的高性能数学运算算子库核心实现
人工智能·深度学习·神经网络
勾股导航3 小时前
K-means
人工智能·机器学习·kmeans
Jay Kay4 小时前
GVPO:Group Variance Policy Optimization
人工智能·算法·机器学习