【走迷宫】

题目

DFS代码

cpp 复制代码
#include<bits/stdc++.h>
using namespace std;
const int N = 110;
int matrix[N][N];
int n, m;
int dx[4] = {-1, 0, 1, 0}, dy[4] = {0, 1, 0, -1};
int dis[N][N];
void dfs(int x, int y, int cnt)
{
    if(cnt > dis[n-1][m-1]) return;
    if(x == n-1 && y == m-1) return;


    for(int i = 0; i < 4; i++)
    {
        int nx = x + dx[i], ny = y + dy[i];
        
        if(nx < 0 || ny < 0 || nx >= n || ny >= m || matrix[nx][ny]) continue;
        
        if(dis[nx][ny] > dis[x][y] + 1)
        {
            dis[nx][ny] = dis[x][y] + 1;
            dfs(nx, ny, cnt+1);
        }
    }
}
int main()
{
    scanf("%d%d", &n, &m);
    for(int i = 0; i < n; i++)
    {
        
        for(int j = 0; j < m; j++)
        {
            scanf("%d", &matrix[i][j]);
        }
    }
    memset(dis, 0x3f, sizeof dis);        
    dis[0][0] = 0;
    dfs(0, 0, 0);
    cout << dis[n-1][m-1];
    
    return 0;
}

优化:

1.if(cnt >= res) return; (较好)

2.if(dis[x][y] < cnt) return; (较好)
else dis[x][y] = cnt;

3. if(dis[nx][ny] > dis[x][y] + 1) (非常好)
{
dis[nx][ny] = dis[x][y] + 1;
dfs(nx, ny, cnt+1);
}

优化1+优化2都不如单用优化3

优化3可以替代优化2,同时可以不需要visited访问数组、cnt参数、res。

优化1可以和优化3搭配(需要cnt参数),效果最好,比单用优化3快一倍。为什么?

注意:优化2中和优化3中均不能加等号,前者会导致错误,后者会TLE。为什么?

BFS代码

cpp 复制代码
#include<bits/stdc++.h>
using namespace std;
typedef pair<int, int> PII;
#define f first
#define s second

const int N = 110;
int g[N][N];
int n, m;
int dx[4] = {-1, 0, 1, 0}, dy[4] = {0, 1, 0, -1};
int dis[N][N];
int bfs(int a, int b)
{
    queue<PII> q;
    q.push({a,b});
    dis[a][b] = 0;
    while(q.size())
    {
        PII u = q.front();
        q.pop();
        for(int i = 0; i < 4; i++)
        {
            int nx = u.f + dx[i], ny = u.s + dy[i];
            if(nx >= 0 && ny >= 0 && nx < n && ny < m && !g[nx][ny] && dis[nx][ny] == -1)
            {
                q.push({nx, ny});
                dis[nx][ny] = dis[u.f][u.s] + 1;
            }

        }
    }
    
    return dis[n-1][m-1];
}
int main()
{
    scanf("%d%d", &n, &m);
    for(int i = 0; i < n; i++)
    {
        
        for(int j = 0; j < m; j++)
        {
            scanf("%d", &g[i][j]);
        }
    }
    memset(dis, -1, sizeof dis);
    cout << bfs(0, 0);
    
    return 0;
}

数组实现

cpp 复制代码
#include<bits/stdc++.h>
using namespace std;
typedef pair<int, int> PII;
#define f first
#define s second

const int N = 110;
int g[N][N];
PII q[N * N];
int n, m;
int dx[4] = {-1, 0, 1, 0}, dy[4] = {0, 1, 0, -1};
int dis[N][N];
int bfs(int a, int b)
{
    int h = 0, t = 0;
    q[0] = {a, b};
    dis[a][b] = 0;
    while(h <= t)
    {
        auto u = q[h++];
        for(int i = 0; i < 4; i++)
        {
            int nx = u.f + dx[i], ny = u.s + dy[i];
            if(nx >= 0 && ny >= 0 && nx < n && ny < m && !g[nx][ny] && dis[nx][ny] == -1)
            {
                q[++t] = {nx, ny};
                dis[nx][ny] = dis[u.f][u.s] + 1;
            }
        }
    }
    return dis[n-1][m-1];
}
int main()
{
    scanf("%d%d", &n, &m);
    for(int i = 0; i < n; i++)
    {
        
        for(int j = 0; j < m; j++)
        {
            scanf("%d", &g[i][j]);
        }
    }
    memset(dis, -1, sizeof dis);
    cout << bfs(0, 0);
    
    return 0;
}
相关推荐
Dream_Snowar5 分钟前
速通Python 第四节——函数
开发语言·python·算法
Altair澳汰尔18 分钟前
数据分析和AI丨知识图谱,AI革命中数据集成和模型构建的关键推动者
人工智能·算法·机器学习·数据分析·知识图谱
A懿轩A42 分钟前
C/C++ 数据结构与算法【栈和队列】 栈+队列详细解析【日常学习,考研必备】带图+详细代码
c语言·数据结构·c++·学习·考研·算法·栈和队列
Python机器学习AI1 小时前
分类模型的预测概率解读:3D概率分布可视化的直观呈现
算法·机器学习·分类
吕小明么2 小时前
OpenAI o3 “震撼” 发布后回归技术本身的审视与进一步思考
人工智能·深度学习·算法·aigc·agi
1 9 J2 小时前
数据结构 C/C++(实验五:图)
c语言·数据结构·c++·学习·算法
程序员shen1616112 小时前
抖音短视频saas矩阵源码系统开发所需掌握的技术
java·前端·数据库·python·算法
汝即来归2 小时前
选择排序和冒泡排序;MySQL架构
数据结构·算法·排序算法
咒法师无翅鱼3 小时前
【定理证明工具调研】Coq, Isabelle and Lean.
算法
风清云淡_A3 小时前
【java基础系列】实现数字的首位交换算法
java·算法