【走迷宫】

题目

DFS代码

cpp 复制代码
#include<bits/stdc++.h>
using namespace std;
const int N = 110;
int matrix[N][N];
int n, m;
int dx[4] = {-1, 0, 1, 0}, dy[4] = {0, 1, 0, -1};
int dis[N][N];
void dfs(int x, int y, int cnt)
{
    if(cnt > dis[n-1][m-1]) return;
    if(x == n-1 && y == m-1) return;


    for(int i = 0; i < 4; i++)
    {
        int nx = x + dx[i], ny = y + dy[i];
        
        if(nx < 0 || ny < 0 || nx >= n || ny >= m || matrix[nx][ny]) continue;
        
        if(dis[nx][ny] > dis[x][y] + 1)
        {
            dis[nx][ny] = dis[x][y] + 1;
            dfs(nx, ny, cnt+1);
        }
    }
}
int main()
{
    scanf("%d%d", &n, &m);
    for(int i = 0; i < n; i++)
    {
        
        for(int j = 0; j < m; j++)
        {
            scanf("%d", &matrix[i][j]);
        }
    }
    memset(dis, 0x3f, sizeof dis);        
    dis[0][0] = 0;
    dfs(0, 0, 0);
    cout << dis[n-1][m-1];
    
    return 0;
}

优化:

1.if(cnt >= res) return; (较好)

2.if(dis[x][y] < cnt) return; (较好)
else dis[x][y] = cnt;

3. if(dis[nx][ny] > dis[x][y] + 1) (非常好)
{
dis[nx][ny] = dis[x][y] + 1;
dfs(nx, ny, cnt+1);
}

优化1+优化2都不如单用优化3

优化3可以替代优化2,同时可以不需要visited访问数组、cnt参数、res。

优化1可以和优化3搭配(需要cnt参数),效果最好,比单用优化3快一倍。为什么?

注意:优化2中和优化3中均不能加等号,前者会导致错误,后者会TLE。为什么?

BFS代码

cpp 复制代码
#include<bits/stdc++.h>
using namespace std;
typedef pair<int, int> PII;
#define f first
#define s second

const int N = 110;
int g[N][N];
int n, m;
int dx[4] = {-1, 0, 1, 0}, dy[4] = {0, 1, 0, -1};
int dis[N][N];
int bfs(int a, int b)
{
    queue<PII> q;
    q.push({a,b});
    dis[a][b] = 0;
    while(q.size())
    {
        PII u = q.front();
        q.pop();
        for(int i = 0; i < 4; i++)
        {
            int nx = u.f + dx[i], ny = u.s + dy[i];
            if(nx >= 0 && ny >= 0 && nx < n && ny < m && !g[nx][ny] && dis[nx][ny] == -1)
            {
                q.push({nx, ny});
                dis[nx][ny] = dis[u.f][u.s] + 1;
            }

        }
    }
    
    return dis[n-1][m-1];
}
int main()
{
    scanf("%d%d", &n, &m);
    for(int i = 0; i < n; i++)
    {
        
        for(int j = 0; j < m; j++)
        {
            scanf("%d", &g[i][j]);
        }
    }
    memset(dis, -1, sizeof dis);
    cout << bfs(0, 0);
    
    return 0;
}

数组实现

cpp 复制代码
#include<bits/stdc++.h>
using namespace std;
typedef pair<int, int> PII;
#define f first
#define s second

const int N = 110;
int g[N][N];
PII q[N * N];
int n, m;
int dx[4] = {-1, 0, 1, 0}, dy[4] = {0, 1, 0, -1};
int dis[N][N];
int bfs(int a, int b)
{
    int h = 0, t = 0;
    q[0] = {a, b};
    dis[a][b] = 0;
    while(h <= t)
    {
        auto u = q[h++];
        for(int i = 0; i < 4; i++)
        {
            int nx = u.f + dx[i], ny = u.s + dy[i];
            if(nx >= 0 && ny >= 0 && nx < n && ny < m && !g[nx][ny] && dis[nx][ny] == -1)
            {
                q[++t] = {nx, ny};
                dis[nx][ny] = dis[u.f][u.s] + 1;
            }
        }
    }
    return dis[n-1][m-1];
}
int main()
{
    scanf("%d%d", &n, &m);
    for(int i = 0; i < n; i++)
    {
        
        for(int j = 0; j < m; j++)
        {
            scanf("%d", &g[i][j]);
        }
    }
    memset(dis, -1, sizeof dis);
    cout << bfs(0, 0);
    
    return 0;
}
相关推荐
小孟Java攻城狮29 分钟前
leetcode-不同路径问题
算法·leetcode·职场和发展
查理零世1 小时前
算法竞赛之差分进阶——等差数列差分 python
python·算法·差分
小猿_003 小时前
C语言程序设计十大排序—插入排序
c语言·算法·排序算法
熊文豪5 小时前
深入解析人工智能中的协同过滤算法及其在推荐系统中的应用与优化
人工智能·算法
siy23338 小时前
[c语言日寄]结构体的使用及其拓展
c语言·开发语言·笔记·学习·算法
吴秋霖8 小时前
最新百应abogus纯算还原流程分析
算法·abogus
灶龙9 小时前
浅谈 PID 控制算法
c++·算法
菜还不练就废了9 小时前
蓝桥杯算法日常|c\c++常用竞赛函数总结备用
c++·算法·蓝桥杯
金色旭光9 小时前
目标检测高频评价指标的计算过程
算法·yolo
he101019 小时前
1/20赛后总结
算法·深度优先·启发式算法·广度优先·宽度优先