【Python机器学习】Apriori算法——示例:发现毒蘑菇的相似特征

有时我们并不想寻找所有的频繁项集,而只对包含某个特定元素项的项集感兴趣。在下面这个例子里,我们会寻找毒蘑菇中的一些公共特征,利用这些特征就可以避免吃到那些有毒的蘑菇。

UCI的机器学习数据集合中有一个关于肋形蘑菇的23中特征的数据集,每一个特征都包含一个标称数据值。我们必须将这些标称数据值转化成一个集合。我们已经把每个蘑菇特征样本转换成一个特征集合,其中枚举了每个特征的所有可能值,如果某个样本包含特征,那么该特征对应的整数值被包含数据集中。

下面观察数据:

第一个特征表示有毒或者可食用。如果某样本有毒,则值为2。如果可食用,则值为1.下一个特征是蘑菇伞的形状,有六种可能的值,分别用整数3-8表示。

为了找到毒蘑菇中存在的公共特征,可以运行Apriori算法来寻找包含特征值为2的频繁项集:

python 复制代码
mushDataSet=[line.split() for line in open('test/mushroom.dat').readlines()]
#print(mushDataSet)
L,suppData=apriori(mushDataSet,minSupport=0.3)
for item in L[1]:
    if item.intersection('2'):
        print(item)

上述代码中在Apriori算法结果中搜索了包含有毒特征2 的频繁项集,下面,对更大的项集来重复上述过程:

python 复制代码
for item in L[3]:
    if item.intersection('2'):
        print(item)

接下来,需要观察这些特征,以便知道了解野蘑菇的那些方面。

相关推荐
疯狂的挖掘机1 小时前
记一次基于QT的图片操作处理优化思路(包括在图上放大缩小,截图,画线,取值等)
开发语言·数据库·qt
YGGP1 小时前
【Golang】LeetCode 64. 最小路径和
算法·leetcode
cnxy1881 小时前
围棋对弈Python程序开发完整指南:步骤4 - 提子逻辑和劫争规则实现
开发语言·python·机器学习
意趣新1 小时前
C 语言源文件从编写完成到最终生成可执行文件的完整、详细过程
c语言·开发语言
数新网络2 小时前
CyberScheduler —— 打破数据调度边界的核心引擎
人工智能
TheSumSt2 小时前
Python丨课程笔记Part3:语法进阶部分(控制结构与基础数据结构)
数据结构·笔记·python
Codebee2 小时前
Ooder框架8步编码流程实战 - DSM组件UI统计模块深度解析
人工智能
ha_lydms2 小时前
5、Spark函数_s/t
java·大数据·python·spark·数据处理·maxcompute·spark 函数
Deepoch2 小时前
智能升级新范式:Deepoc开发板如何重塑康复辅具产业生态
人工智能·具身模型·deepoc·智能轮椅
赋创小助手2 小时前
融合与跃迁:NVIDIA、Groq 与下一代 AI 推理架构的博弈与机遇
服务器·人工智能·深度学习·神经网络·语言模型·自然语言处理·架构