【Python机器学习】Apriori算法——示例:发现毒蘑菇的相似特征

有时我们并不想寻找所有的频繁项集,而只对包含某个特定元素项的项集感兴趣。在下面这个例子里,我们会寻找毒蘑菇中的一些公共特征,利用这些特征就可以避免吃到那些有毒的蘑菇。

UCI的机器学习数据集合中有一个关于肋形蘑菇的23中特征的数据集,每一个特征都包含一个标称数据值。我们必须将这些标称数据值转化成一个集合。我们已经把每个蘑菇特征样本转换成一个特征集合,其中枚举了每个特征的所有可能值,如果某个样本包含特征,那么该特征对应的整数值被包含数据集中。

下面观察数据:

第一个特征表示有毒或者可食用。如果某样本有毒,则值为2。如果可食用,则值为1.下一个特征是蘑菇伞的形状,有六种可能的值,分别用整数3-8表示。

为了找到毒蘑菇中存在的公共特征,可以运行Apriori算法来寻找包含特征值为2的频繁项集:

python 复制代码
mushDataSet=[line.split() for line in open('test/mushroom.dat').readlines()]
#print(mushDataSet)
L,suppData=apriori(mushDataSet,minSupport=0.3)
for item in L[1]:
    if item.intersection('2'):
        print(item)

上述代码中在Apriori算法结果中搜索了包含有毒特征2 的频繁项集,下面,对更大的项集来重复上述过程:

python 复制代码
for item in L[3]:
    if item.intersection('2'):
        print(item)

接下来,需要观察这些特征,以便知道了解野蘑菇的那些方面。

相关推荐
西格电力科技38 分钟前
分布式光伏 “四可” 装置:“发电孤岛” 到 “电网友好” 的关键跨越
分布式·科技·机器学习·能源
AI街潜水的八角40 分钟前
Python电脑屏幕&摄像头录制软件(提供源代码)
开发语言·python
hadage23342 分钟前
--- git 的一些使用 ---
开发语言·git·python
kk哥88992 小时前
从数据分析到深度学习!Anaconda3 2025 全流程开发平台,安装步骤
人工智能
sheeta19982 小时前
LeetCode 每日一题笔记 日期:2025.11.24 题目:1018. 可被5整除的二进制前缀
笔记·算法·leetcode
陈天伟教授3 小时前
基于学习的人工智能(3)机器学习基本框架
人工智能·学习·机器学习·知识图谱
lly2024063 小时前
HTML与CSS:构建网页的基石
开发语言
一只会写代码的猫3 小时前
面向高性能计算与网络服务的C++微内核架构设计与多线程优化实践探索与经验分享
java·开发语言·jvm
搞科研的小刘选手4 小时前
【厦门大学主办】第六届计算机科学与管理科技国际学术会议(ICCSMT 2025)
人工智能·科技·计算机网络·计算机·云计算·学术会议