【Python机器学习】Apriori算法——示例:发现毒蘑菇的相似特征

有时我们并不想寻找所有的频繁项集,而只对包含某个特定元素项的项集感兴趣。在下面这个例子里,我们会寻找毒蘑菇中的一些公共特征,利用这些特征就可以避免吃到那些有毒的蘑菇。

UCI的机器学习数据集合中有一个关于肋形蘑菇的23中特征的数据集,每一个特征都包含一个标称数据值。我们必须将这些标称数据值转化成一个集合。我们已经把每个蘑菇特征样本转换成一个特征集合,其中枚举了每个特征的所有可能值,如果某个样本包含特征,那么该特征对应的整数值被包含数据集中。

下面观察数据:

第一个特征表示有毒或者可食用。如果某样本有毒,则值为2。如果可食用,则值为1.下一个特征是蘑菇伞的形状,有六种可能的值,分别用整数3-8表示。

为了找到毒蘑菇中存在的公共特征,可以运行Apriori算法来寻找包含特征值为2的频繁项集:

python 复制代码
mushDataSet=[line.split() for line in open('test/mushroom.dat').readlines()]
#print(mushDataSet)
L,suppData=apriori(mushDataSet,minSupport=0.3)
for item in L[1]:
    if item.intersection('2'):
        print(item)

上述代码中在Apriori算法结果中搜索了包含有毒特征2 的频繁项集,下面,对更大的项集来重复上述过程:

python 复制代码
for item in L[3]:
    if item.intersection('2'):
        print(item)

接下来,需要观察这些特征,以便知道了解野蘑菇的那些方面。

相关推荐
北上ing14 分钟前
算法练习:19.JZ29 顺时针打印矩阵
算法·leetcode·矩阵
mahuifa15 分钟前
(7)python开发经验
python·qt·pyside6·开发经验
.格子衫.1 小时前
真题卷001——算法备赛
算法
学地理的小胖砸2 小时前
【Python 操作 MySQL 数据库】
数据库·python·mysql
安迪小宝2 小时前
6 任务路由与负载均衡
运维·python·celery
XiaoyaoCarter2 小时前
每日一道leetcode
c++·算法·leetcode·职场和发展·二分查找·深度优先·前缀树
Blossom.1182 小时前
使用Python实现简单的人工智能聊天机器人
开发语言·人工智能·python·低代码·数据挖掘·机器人·云计算
da-peng-song2 小时前
ArcGIS Desktop使用入门(二)常用工具条——数据框工具(旋转视图)
开发语言·javascript·arcgis
galaxy_strive2 小时前
qtc++ qdebug日志生成
开发语言·c++·qt
TNTLWT2 小时前
Qt功能区:简介与安装
开发语言·qt