有时我们并不想寻找所有的频繁项集,而只对包含某个特定元素项的项集感兴趣。在下面这个例子里,我们会寻找毒蘑菇中的一些公共特征,利用这些特征就可以避免吃到那些有毒的蘑菇。
UCI的机器学习数据集合中有一个关于肋形蘑菇的23中特征的数据集,每一个特征都包含一个标称数据值。我们必须将这些标称数据值转化成一个集合。我们已经把每个蘑菇特征样本转换成一个特征集合,其中枚举了每个特征的所有可能值,如果某个样本包含特征,那么该特征对应的整数值被包含数据集中。
下面观察数据:
第一个特征表示有毒或者可食用。如果某样本有毒,则值为2。如果可食用,则值为1.下一个特征是蘑菇伞的形状,有六种可能的值,分别用整数3-8表示。
为了找到毒蘑菇中存在的公共特征,可以运行Apriori算法来寻找包含特征值为2的频繁项集:
python
mushDataSet=[line.split() for line in open('test/mushroom.dat').readlines()]
#print(mushDataSet)
L,suppData=apriori(mushDataSet,minSupport=0.3)
for item in L[1]:
if item.intersection('2'):
print(item)
上述代码中在Apriori算法结果中搜索了包含有毒特征2 的频繁项集,下面,对更大的项集来重复上述过程:
python
for item in L[3]:
if item.intersection('2'):
print(item)
接下来,需要观察这些特征,以便知道了解野蘑菇的那些方面。