论文阅读笔记:ST-MetaNet-2

目录

预备知识

定义1:城市交通

定义2:Geo-graph属性

问题1

方法

RNN

元学习器

元图注意力网络

元循环神经网络


预备知识

在本节中,我们介绍定义和问题陈述。为简洁起见,我们在表1中提供了一个注释表。

假设有个位置,它们报告时间戳上的类型的流量信息。

注:我猜测这里所陈述的应为类似于"重度拥堵","轻度拥堵"等类型信息。

定义1:城市交通

城市交通记为一个向量,其中表示在时间t所有位置的交通流量信息。

定义2:Geo-graph属性

Geo-graoh属性代表位置周围的环境以及其相互关系,分别对应节点属性和边属性。形式上,使图G=(V,E)代表一个有向图,V和E分别是表示该位置特征和表示位置间联系的向量列表。此外,我们使用Ni来表示节点i的邻居。

问题1

给定前序交通信息输入流和geo-graph信息G,预测下一时间步中所有地理位置的输出流信息

方法

在本节中,我们描述了用于流量预测的st -MetaNet的架构,如图3(a)所示。遵循序列到序列(Seq2Seq)架构,ST-MetaNet由两个独立的单元组成:编码码器(蓝色部分)和解码器(绿色部分)。前者用于对输入序列进行编码,如,城市历史交通信息数据,产出隐状态H_{RNN},H_{Meta-RNN},作为解码器的初始状态,并据此输出未来若干时间步的预测交通流量。

更具体一些来进行说明,编码器和解码器有着相同的网络结构,包含四个组成部分:

RNN

我们使用RNN来嵌入历史城市交通序列,能够学习长时间的时序依赖关系。

元学习器

如图3(b)所示,我们使用两个全连接网络(FCNs),命名为节点元知识学习器(Node-Meta-Knowledge Learner) (NMK-Learner)和边元知识学习器(Edge-Meta-Knowledge Learner)(EMK-Learner),分别从节点属性(如POIs和GPS位置)和边属性(如位置间距离和道路连通性)中学习节点和边的元知识。然后,将学习到的元知识进一步用于学习另两种网络的权重,即图注意力网络 (GAT)和循环神经网络。以一个节点为例,节点的属性输入给NMK-Learner,随后其输出一个向量,代表该节点的元知识。

元图注意力网络

如图3(c)所示,元图注意力网络(Meta Graph Attention Network)(Meta-GAT)由一个元学习器和一个图神经网络组成。它的输入是所有节点和边的元知识边,输出是图注意力网络的权重。Meta-GAT通过沿边单独广播位置的隐状态来捕获不同的空间相关性。

元循环神经网络

如图3(d)所示,元循环神经网络(Meta Recurrent Neural Network)(Meta-RNN)由一个元学习器和一个循环神经网络组成。这里的元学习器是一个典型的FCN,其输入是所有节点的元知识,输出是RNN对每个位置的权重。Meta-RNN可以捕获与位置的地理信息相关的时间相关性。

相关推荐
小W与影刀RPA4 分钟前
【影刀 RPA】 :文档敏感词批量替换,省时省力又高效
人工智能·python·低代码·自动化·rpa·影刀rpa
Python+JAVA+大数据10 分钟前
TCP_IP协议栈深度解析
java·网络·python·网络协议·tcp/ip·计算机网络·三次握手
一个无名的炼丹师25 分钟前
多模态RAG系统进阶:从零掌握olmOCR与MinerU的部署与应用
python·大模型·ocr·多模态·rag
u01092727140 分钟前
使用XGBoost赢得Kaggle比赛
jvm·数据库·python
MediaTea1 小时前
<span class=“js_title_inner“>Python:实例对象</span>
开发语言·前端·javascript·python·ecmascript
闵帆1 小时前
反演学习器面临的鸿沟
人工智能·学习·机器学习
feasibility.1 小时前
多模态模型Qwen3-VL在Llama-Factory中断LoRA微调训练+测试+导出+部署全流程--以具身智能数据集open-eqa为例
人工智能·python·大模型·nlp·llama·多模态·具身智能
我需要一个支点1 小时前
douyin无水印视频下载
爬虫·python
喵手1 小时前
Python爬虫实战:采集各大会展平台的展会名称、举办时间、展馆地点、主办方、行业分类等结构化数据(附CSV导出 + SQLite持久化存储)!
爬虫·python·爬虫实战·零基础python爬虫教学·采集大会展平台信息·展会名称举办时间展馆地址·采集数据csv/json导出
2501_936960361 小时前
1.树莓派零基础教学
笔记