论文阅读笔记:ST-MetaNet-2

目录

预备知识

定义1:城市交通

定义2:Geo-graph属性

问题1

方法

RNN

元学习器

元图注意力网络

元循环神经网络


预备知识

在本节中,我们介绍定义和问题陈述。为简洁起见,我们在表1中提供了一个注释表。

假设有个位置,它们报告时间戳上的类型的流量信息。

注:我猜测这里所陈述的应为类似于"重度拥堵","轻度拥堵"等类型信息。

定义1:城市交通

城市交通记为一个向量,其中表示在时间t所有位置的交通流量信息。

定义2:Geo-graph属性

Geo-graoh属性代表位置周围的环境以及其相互关系,分别对应节点属性和边属性。形式上,使图G=(V,E)代表一个有向图,V和E分别是表示该位置特征和表示位置间联系的向量列表。此外,我们使用Ni来表示节点i的邻居。

问题1

给定前序交通信息输入流和geo-graph信息G,预测下一时间步中所有地理位置的输出流信息

方法

在本节中,我们描述了用于流量预测的st -MetaNet的架构,如图3(a)所示。遵循序列到序列(Seq2Seq)架构,ST-MetaNet由两个独立的单元组成:编码码器(蓝色部分)和解码器(绿色部分)。前者用于对输入序列进行编码,如,城市历史交通信息数据,产出隐状态H_{RNN},H_{Meta-RNN},作为解码器的初始状态,并据此输出未来若干时间步的预测交通流量。

更具体一些来进行说明,编码器和解码器有着相同的网络结构,包含四个组成部分:

RNN

我们使用RNN来嵌入历史城市交通序列,能够学习长时间的时序依赖关系。

元学习器

如图3(b)所示,我们使用两个全连接网络(FCNs),命名为节点元知识学习器(Node-Meta-Knowledge Learner) (NMK-Learner)和边元知识学习器(Edge-Meta-Knowledge Learner)(EMK-Learner),分别从节点属性(如POIs和GPS位置)和边属性(如位置间距离和道路连通性)中学习节点和边的元知识。然后,将学习到的元知识进一步用于学习另两种网络的权重,即图注意力网络 (GAT)和循环神经网络。以一个节点为例,节点的属性输入给NMK-Learner,随后其输出一个向量,代表该节点的元知识。

元图注意力网络

如图3(c)所示,元图注意力网络(Meta Graph Attention Network)(Meta-GAT)由一个元学习器和一个图神经网络组成。它的输入是所有节点和边的元知识边,输出是图注意力网络的权重。Meta-GAT通过沿边单独广播位置的隐状态来捕获不同的空间相关性。

元循环神经网络

如图3(d)所示,元循环神经网络(Meta Recurrent Neural Network)(Meta-RNN)由一个元学习器和一个循环神经网络组成。这里的元学习器是一个典型的FCN,其输入是所有节点的元知识,输出是RNN对每个位置的权重。Meta-RNN可以捕获与位置的地理信息相关的时间相关性。

相关推荐
数据智能老司机4 小时前
精通 Python 设计模式——分布式系统模式
python·设计模式·架构
数据智能老司机5 小时前
精通 Python 设计模式——并发与异步模式
python·设计模式·编程语言
数据智能老司机5 小时前
精通 Python 设计模式——测试模式
python·设计模式·架构
数据智能老司机5 小时前
精通 Python 设计模式——性能模式
python·设计模式·架构
CoovallyAIHub5 小时前
港大&字节重磅发布DanceGRPO:突破视觉生成RLHF瓶颈,多项任务性能提升超180%!
深度学习·算法·计算机视觉
c8i5 小时前
drf初步梳理
python·django
每日AI新事件5 小时前
python的异步函数
python
使一颗心免于哀伤5 小时前
《设计模式之禅》笔记摘录 - 21.状态模式
笔记·设计模式
CoovallyAIHub5 小时前
英伟达ViPE重磅发布!解决3D感知难题,SLAM+深度学习完美融合(附带数据集下载地址)
深度学习·算法·计算机视觉
这里有鱼汤6 小时前
miniQMT下载历史行情数据太慢怎么办?一招提速10倍!
前端·python