other model

一、CTC

1、Connectionist Temporal Classification

2、使用单向的encoder可以做到在线语音识别

3、在online中:encode将h_i输出,h_i丢到一个线性的Classifier中可以得到当前的token的distribution。

4、还可以得到over整个token的distribution,将h进行transform,再做softmax得到。

5、加入无法判断的输出null

(1)输入T个声学特征,输出T个tokens

(2)输出的token中含有null,将重复的token合并,移除null

6、训练的时候要自己自造情况进行输出,然后训练,这里穷举了

并使最小化损失

7、CTC还有将token设置为word的

二、RNA

1、Recurrent Neural Aligner

2、给一个h_i得到一个token,前后具有依赖性

三、RNN-T

1、给一个h_i输出多个token,直到model觉得自己输出完了,输出一个null;进行下一个h_i的操作

2、还有另一种忽略null的情况

四、Neural Transducer

1、一次给固定多个h_i加上attention输出多个token直到输出null再进行下一组。

2、不同的attention会有不同的正确率

五、MoChA

1、Monotonic Chunkwise Attention

2、现在窗口可以是不固定的了

3、输出还是跟前面的Neural Transducer一样

六、总结

相关推荐
铅笔侠_小龙虾7 小时前
深度学习理论推导--梯度下降法
人工智能·深度学习
&&Citrus8 小时前
【杂谈】SNNU公共计算平台:深度学习服务器配置与远程开发指北
服务器·人工智能·vscode·深度学习·snnu
STLearner8 小时前
AI论文速读 | U-Cast:学习高维时间序列预测的层次结构
大数据·论文阅读·人工智能·深度学习·学习·机器学习·数据挖掘
黑客思维者9 小时前
LLM底层原理学习笔记:Adam优化器为何能征服巨型模型成为深度学习的“速度与稳定之王”
笔记·深度学习·学习·llm·adam优化器
LDG_AGI12 小时前
【推荐系统】深度学习训练框架(十):PyTorch Dataset—PyTorch数据基石
人工智能·pytorch·分布式·python·深度学习·机器学习
AI人工智能+13 小时前
表格识别技术:完整还原银行对账单表格结构、逻辑关系及视觉布局,大幅提升使处理速度提升
人工智能·深度学习·ocr·表格识别
胡乱编胡乱赢13 小时前
Decaf攻击:联邦学习中的数据分布分解攻击
人工智能·深度学习·机器学习·联邦学习·decaf攻击
远上寒山13 小时前
DINO 系列(v1/v2/v3)之二:DINOv2 原理的详细介绍
人工智能·深度学习·自监督·dinov2·自蒸馏·dino系列
_codemonster13 小时前
深度学习实战(基于pytroch)系列(四十)长短期记忆(LSTM)从零开始实现
人工智能·深度学习·lstm