other model

一、CTC

1、Connectionist Temporal Classification

2、使用单向的encoder可以做到在线语音识别

3、在online中:encode将h_i输出,h_i丢到一个线性的Classifier中可以得到当前的token的distribution。

4、还可以得到over整个token的distribution,将h进行transform,再做softmax得到。

5、加入无法判断的输出null

(1)输入T个声学特征,输出T个tokens

(2)输出的token中含有null,将重复的token合并,移除null

6、训练的时候要自己自造情况进行输出,然后训练,这里穷举了

并使最小化损失

7、CTC还有将token设置为word的

二、RNA

1、Recurrent Neural Aligner

2、给一个h_i得到一个token,前后具有依赖性

三、RNN-T

1、给一个h_i输出多个token,直到model觉得自己输出完了,输出一个null;进行下一个h_i的操作

2、还有另一种忽略null的情况

四、Neural Transducer

1、一次给固定多个h_i加上attention输出多个token直到输出null再进行下一组。

2、不同的attention会有不同的正确率

五、MoChA

1、Monotonic Chunkwise Attention

2、现在窗口可以是不固定的了

3、输出还是跟前面的Neural Transducer一样

六、总结

相关推荐
All The Way North-9 小时前
彻底掌握 RNN(实战):PyTorch API 详解、多层RNN、参数解析与输入机制
pytorch·rnn·深度学习·循环神经网络·参数详解·api详解
童话名剑10 小时前
情感分类与词嵌入除偏(吴恩达深度学习笔记)
笔记·深度学习·分类
咋吃都不胖lyh10 小时前
CLIP 不是一个 “自主判断图像内容” 的图像分类模型,而是一个 “图文语义相似度匹配模型”—
人工智能·深度学习·机器学习
咚咚王者12 小时前
人工智能之核心技术 深度学习 第七章 扩散模型(Diffusion Models)
人工智能·深度学习
逄逄不是胖胖12 小时前
《动手学深度学习》-60translate实现
人工智能·python·深度学习
koo36413 小时前
pytorch深度学习笔记19
pytorch·笔记·深度学习
哥布林学者14 小时前
吴恩达深度学习课程五:自然语言处理 第三周:序列模型与注意力机制(三)注意力机制
深度学习·ai
A先生的AI之旅14 小时前
2026-1-30 LingBot-VA解读
人工智能·pytorch·python·深度学习·神经网络
Learn Beyond Limits14 小时前
文献阅读:A Probabilistic U-Net for Segmentation of Ambiguous Images
论文阅读·人工智能·深度学习·算法·机器学习·计算机视觉·ai
下午写HelloWorld16 小时前
差分隐私深度学习(DP-DL)简要理解
人工智能·深度学习