大数据-86 Spark 集群 WordCount 用 Scala & Java 调用Spark 编译并打包上传运行 梦开始的地方

点一下关注吧!!!非常感谢!!持续更新!!!

目前已经更新到了:

  • Hadoop(已更完)
    HDFS(已更完)
    MapReduce(已更完)
    Hive(已更完)
    Flume(已更完)
    Sqoop(已更完)
    Zookeeper(已更完)
    HBase(已更完)
    Redis (已更完)
    Kafka(已更完)
    Spark(正在更新!)

章节内容

上节我们完成了如下的内容:

  • Spark RDD 操作方式Action
  • Spark RDD的 Key-Value RDD
  • 详细解释与测试案例

梦的开始

写一个WordCount程序虽然看似简单,但它在大数据学习中有着深远的意义。就像编程世界中的"Hello World",WordCount是我们迈入分布式计算世界的第一步。在这个过程中,我不仅加深了对Spark生态系统的理解,还亲身体验了大数据处理的核心思想:分而治之。

通过编写和运行这个程序,我意识到,尽管代码本身很简单,但其背后的概念却揭示了大数据处理的复杂性与挑战性。每个词频的统计背后,都代表着分布式系统中对数据的高效切分、分发和聚合。这使我更加意识到,在大数据的世界里,性能优化和资源管理是永恒的主题。

更重要的是,WordCount让我感受到Scala语言在处理并行计算时的优势。通过在实际环境中部署和运行这个程序,我也看到了自己从理论学习向实践应用迈出的重要一步。这不仅是一段代码的完成,更是我在大数据领域探索旅程的一个重要里程碑。

总的来说,这段经历让我更加坚定了继续深入学习和应用大数据技术的决心。WordCount不仅是学习的起点,更是打开大数据世界大门的一把钥匙。

环境依赖

首先要确保你之前的环境都搭建完毕了,最起码的要有单机的Spark,最好是有Spark集群,可以更好的进行学习和测试。

导入依赖

xml 复制代码
<project xmlns="http://maven.apache.org/POM/4.0.0"
         xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
         xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd">
    <modelVersion>4.0.0</modelVersion>

    <groupId>icu.wzk</groupId>
    <artifactId>spark-wordcount</artifactId>
    <version>1.0-SNAPSHOT</version>

    <properties>
        <scala.version>2.12.10</scala.version>
        <spark.version>2.4.5</spark.version>
        <maven.compiler.source>1.8</maven.compiler.source>
        <maven.compiler.target>1.8</maven.compiler.target>
    </properties>

    <dependencies>
        <dependency>
            <groupId>org.apache.spark</groupId>
            <artifactId>spark-core_2.12</artifactId>
            <version>${spark.version}</version>
        </dependency>
        <dependency>
            <groupId>org.apache.spark</groupId>
            <artifactId>spark-sql_2.12</artifactId>
            <version>${spark.version}</version>
        </dependency>
        <dependency>
            <groupId>org.scala-lang</groupId>
            <artifactId>scala-library</artifactId>
            <version>${scala.version}</version>
        </dependency>
        <dependency>
            <groupId>com.typesafe</groupId>
            <artifactId>config</artifactId>
            <version>1.3.4</version>
        </dependency>
    </dependencies>

    <build>
        <plugins>
            <plugin>
                <groupId>net.alchim31.maven</groupId>
                <artifactId>scala-maven-plugin</artifactId>
                <version>4.4.0</version>
                <executions>
                    <execution>
                        <goals>
                            <goal>compile</goal>
                            <goal>testCompile</goal>
                        </goals>
                    </execution>
                </executions>
            </plugin>
            <plugin>
                <groupId>org.apache.maven.plugins</groupId>
                <artifactId>maven-assembly-plugin</artifactId>
                <version>3.3.0</version>
                <configuration>
                    <archive>
                        <manifest>
                            <mainClass>cn.lagou.sparkcore.WordCount</mainClass>
                        </manifest>
                    </archive>
                    <descriptorRefs>
                        <descriptorRef>jar-with-dependencies</descriptorRef>
                    </descriptorRefs>
                </configuration>
                <executions>
                    <execution>
                        <phase>package</phase>
                        <goals>
                            <goal>single</goal>
                        </goals>
                    </execution>
                </executions>
            </plugin>
        </plugins>
    </build>
</project>

编写Scala

使用Scala完成我们的Word Count程序:

scala 复制代码
package icu.wzk

import org.apache.spark.rdd.RDD
import org.apache.spark.{SparkConf, SparkContext}

object WordCount {
  def main(args: Array[String]): Unit = {
    var conf = new SparkConf().setAppName("ScalaHelloWorldCount")
    val sc = new SparkContext(conf)
    sc.setLogLevel("WARN")

    val lines: RDD[String] = sc.textFile(args(0))

    val words: RDD[String] = lines.flatMap(line => line.split("\\s+"))
    val wordMap: RDD[(String, Int)] = words.map(x => (x, 1))
    val result: RDD[(String, Int)] = wordMap.reduceByKey(_ + _)

    result.foreach(println)
    sc.stop()
  }
}

大致的项目结构和内容,如下图所示:

编译项目

运行Maven的Package,等待执行完毕后,会在 target 下打包出一个 Jar 包。

如果是第一次打包,需要下载包,时间会比较久。

shell 复制代码
# 你也可以用Shell的方式
mvn clean package

运行的过程如下图所示:

打包完的结果大致如下:

上传项目

将项目上传到Spark的集群中:

shell 复制代码
cd /opt/wzk

我上传到该目录,该目录的情况大致如下:

运行项目

编写如下的指令,将任务提交到Spark集群中进行运行。

我这里随便找了个文件,你也可以找个文件进行运行。

shell 复制代码
spark-submit --master local[*] --class icu.wzk.WordCount spark-wordcount-1.0-SNAPSHOT.jar /opt/wzk/goodtbl.java

运行结果如下图:

经过一段时间的计算之后,可以看到最终的结果如下图所示:

编写Java

java 复制代码
package icu.wzk;

import org.apache.spark.SparkConf;
import org.apache.spark.api.java.JavaPairRDD;
import org.apache.spark.api.java.JavaRDD;
import org.apache.spark.api.java.JavaSparkContext;
import scala.Tuple2;

import java.util.Arrays;

public class JavaWordCount {
    public static void main(String[] args) {
        SparkConf conf = new SparkConf()
                .setAppName("JavaWordCount")
                .setMaster("local[*]");
        JavaSparkContext sc = new JavaSparkContext(conf);
        sc.setLogLevel("WARN");
        JavaRDD<String> lines = sc.textFile(args[0]);
        JavaRDD<String> words = lines
                .flatMap(line -> Arrays.stream(line.split("\\s+")).iterator());
        JavaPairRDD<String, Integer> wordsMap = words
                .mapToPair(word -> new Tuple2<>(word, 1));
        JavaPairRDD<String, Integer> results = wordsMap.reduceByKey((x, y) -> x + y);
        results.foreach(elem -> System.out.println(elem));
        sc.stop();
    }
}

编译项目

和上面一样,Scala的方式一样:

上传项目

同样的,和上述的Scala的过程一样,将项目上传:

shell 复制代码
/opt/wzk/spark-wordcount-1.0-SNAPSHOT.jar

运行项目

这里注意,写的是Java的类,而不是Scala的启动:

shell 复制代码
spark-submit --master local[*] --class icu.wzk.JavaWordCount spark-wordcount-1.0-SNAPSHOT.jar /opt/wzk/goodtbl.java

运行的过程截图如下图所示:

等待执行完毕,最终的结果如下图所示:

相关推荐
Coder个人博客5 小时前
Linux6.19-ARM64 mm mmu子模块深入分析
大数据·linux·车载系统·系统架构·系统安全·鸿蒙系统
侠客行03176 小时前
Mybatis连接池实现及池化模式
java·mybatis·源码阅读
蛇皮划水怪6 小时前
深入浅出LangChain4J
java·langchain·llm
较劲男子汉8 小时前
CANN Runtime零拷贝传输技术源码实战 彻底打通Host与Device的数据传输壁垒
运维·服务器·数据库·cann
老毛肚8 小时前
MyBatis体系结构与工作原理 上篇
java·mybatis
wypywyp8 小时前
8. ubuntu 虚拟机 linux 服务器 TCP/IP 概念辨析
linux·服务器·ubuntu
心态还需努力呀8 小时前
CANN仓库通信库:分布式训练的梯度压缩技术
分布式·cann
风流倜傥唐伯虎8 小时前
Spring Boot Jar包生产级启停脚本
java·运维·spring boot
Doro再努力8 小时前
【Linux操作系统10】Makefile深度解析:从依赖推导到有效编译
android·linux·运维·服务器·编辑器·vim
senijusene9 小时前
Linux软件编程:IO编程,标准IO(1)
linux·运维·服务器