机器学习:knn算法实现图像识别

1、概述

使用K-近邻(K-Nearest Neighbors, KNN)算法对手写数字进行识别的过程。通过读取一张包含多个手写数字的图片,将其分割成单独的数字图像,并将其作为训练和测试数据集。

2、数据处理思路

1、图像分割该数据有50行100列,每个数字占据20*20个像素点,可以进行切分

2、划分出训练集和测试集

3、每个数据的像素点为20*20,将其全部变成一列1*400格式,转换成数值特征

4、最后使用KNN算法训练模型,使用测试集评估模型的性能

3、方法:

  1. 数据准备: 描述如何获取和准备"digits.png"图片数据。
  2. 图像预处理: 包括图像读取、灰度转换和图像分割。
  3. 数据集划分: 说明如何将图像分割后的小块划分为训练集和测试集。
  4. 特征提取: 描述如何将图像数据转换为适合KNN算法处理的数值特征。
  5. 模型训练: 详细说明如何使用KNN算法训练模型,包括参数设置和训练过程。
  6. 模型评估: 描述如何使用测试集评估模型的性能,包括准确率的计算方法。
  7. **数据检测:**输入数据进行判断。
python 复制代码
import cv2
import numpy as np#导入库
#数据准备
img=cv2.imread("digits.png")#cv2读取文件

#图像预处理
gray=cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)#将读取的文件变成灰度图
splited=[np.hsplit(i,100) for i in np.vsplit(gray,50)]#将该图切成50行100列

#数据集划分
x=np.array(splited)#将切好后的数据以数组的形式保存
train=x[:,:50]#前面50列定义为训练集
test=x[:,50:100]#后面50列定义为测试集

#特征提取
#每一个数据占据20*20的像素,将其转换成一列1*400格式重新塑形并转换为浮点数类型,以便用于K-近邻算法的输入。
train1=train.reshape(-1,400).astype(np.float32)
test1=test.reshape(-1,400).astype(np.float32)
#训练集中0-9,各有250个,是train1的结果,np.newaxis改变维度和上面训练集维度相同
train_result=np.repeat(np.arange(10),250)[:,np.newaxis]
test_result=np.repeat(np.arange(10),250)[:,np.newaxis]

#模型训练
#创建K-近邻算法的实例
knn=cv2.ml.KNearest_create()
#将train1按照1*400的格式为特征,train_result为标签进行训练,cv2.ml.ROW_SAMPLE(将数据一行行输出)
knn.train(train1,cv2.ml.ROW_SAMPLE,train_result)
#将测试集带入,k近邻设置为3(建议为奇数,尽量避免出现相同的数量)
ret,result,neighbours,dist=knn.findNearest(test1,k=3)
#ret:检测操作成功
#result: 这是存储搜索结果。
#neighbours: 这将是一个列表,包含每个测试点的最近邻的索引。
#dist: 这将是一个列表,包含每个测试点到其最近邻的距离

#模型评估
#比较测试结果和测试集结果
matches=result==test_result
#统计正确的数量
correct=np.count_nonzero(matches)
#求占比
accuracy=correct*100.0/result.size
print(accuracy)

#数据检测
imgn=cv2.imread("p6.png")
grayn=cv2.cvtColor(imgn,cv2.COLOR_BGR2GRAY)
xn=np.array(grayn)
testn=xn.reshape(-1,400).astype(np.float32)
ret,resultn,neighbours,dist=knn.findNearest(testn,k=5)
print(resultn)
相关推荐
飞哥数智坊17 小时前
GPT-5-Codex 发布,Codex 正在取代 Claude
人工智能·ai编程
倔强青铜三18 小时前
苦练Python第46天:文件写入与上下文管理器
人工智能·python·面试
虫无涯18 小时前
Dify Agent + AntV 实战:从 0 到 1 打造数据可视化解决方案
人工智能
Dm_dotnet20 小时前
公益站Agent Router注册送200刀额度竟然是真的
人工智能
算家计算21 小时前
7B参数拿下30个世界第一!Hunyuan-MT-7B本地部署教程:腾讯混元开源业界首个翻译集成模型
人工智能·开源
机器之心21 小时前
LLM开源2.0大洗牌:60个出局,39个上桌,AI Coding疯魔,TensorFlow已死
人工智能·openai
Juchecar1 天前
交叉熵:深度学习中最常用的损失函数
人工智能
林木森ai1 天前
爆款AI动物运动会视频,用Coze(扣子)一键搞定全流程(附保姆级拆解)
人工智能·aigc
聚客AI1 天前
🙋‍♀️Transformer训练与推理全流程:从输入处理到输出生成
人工智能·算法·llm
BeerBear1 天前
【保姆级教程-从0开始开发MCP服务器】一、MCP学习压根没有你想象得那么难!.md
人工智能·mcp