24/8/14算法笔记 复习_支持向量机svc

支持向量机(Support Vector Machine, SVM)是一种强大的监督学习模型,用于分类、回归甚至异常检测。它基于统计学习理论,特别关注找到数据的最佳分隔超平面。

复制代码
import numpy as np
import matplotlib.pyplot as plt
 
from sklearn.svm import SVC
from sklearn import datasets

X,y = datasets.make_blobs(n_samples= 100,#样本量
                          n_features=2,#二维数据,便于画图展示
                          centers = 2,#两块
                          random_state = 3)#随机数种子
plt.scatter(X[:,0],X[:,1],c=y)

#算法建模
svc = SVC(kernel = 'linear')
svc.fit(X,y)

#绘制分割线
w_ = svc.coef_#有两个特征
b_ = svc.intercept_
w = -w_[0,0]/w_[0,1]
b = -b_/w_[0,1]
sv = svc.support_vectors_  #当你使用像 scikit-learn 这样的库训练一个 SVM 模型时,support_vectors_ 包含了在模型训练过程中被选择为支持向量的样本点

x = np.linspace(-5,1,100)   #np.linspace函数可以生成一个包含固定数量元素的数组,这些元素均匀地分布在指定的区间内。这个函数在科学计算和数据分析中非常有用,因为它可以帮助你创建一个等间距的数值序列。
y_result = w*x+b
plt.scatter(X[:,0],X[:,1],c=y)
plt.plot(x,y_result,color = 'red')

#上下边界
b1 = sv[0][1] - w*sv[0][0]
plt.plot(x,w*x + b1,color = 'blue',ls = '--')

b2 = sv[-1][1] - w*sv[-1][0]
plt.plot(x,w*x+b2,color='blue',ls='--')

linspace为什么要这一步:

  1. 数值分析 :在数值分析中,经常需要在某个区间内对函数进行评估,linspace可以确保评估点均匀分布。

  2. 绘图:在绘图时,你可能需要在特定区间内均匀分布的x值来计算对应的y值,然后绘制函数图像。

  3. 函数评估:在评估函数的行为或特性时,均匀的点集可以帮助你更好地理解函数在不同区间的表现。

  4. 算法实现:某些算法可能需要在特定区间内均匀采样,以确保算法的准确性和公平性。

  5. 测试和验证:在测试函数或模型时,均匀的采样可以确保覆盖整个输入范围。

相关推荐
雁于飞1 小时前
vscode中使用git、githup的基操
笔记·git·vscode·学习·elasticsearch·gitee·github
rannn_1111 小时前
【Javaweb学习|实训总结|Week1】html基础,CSS(选择器、常用样式、盒子模型、弹性盒布局、CSS定位、动画),js(基本类型、运算符典例)
css·笔记·学习·html
Ro Jace2 小时前
心灵笔记:第一性原理学习与实践
笔记
蒋星熠2 小时前
Flutter跨平台工程实践与原理透视:从渲染引擎到高质产物
开发语言·python·算法·flutter·设计模式·性能优化·硬件工程
小欣加油2 小时前
leetcode 面试题01.02判定是否互为字符重排
数据结构·c++·算法·leetcode·职场和发展
3Cloudream2 小时前
LeetCode 003. 无重复字符的最长子串 - 滑动窗口与哈希表详解
算法·leetcode·字符串·双指针·滑动窗口·哈希表·中等
王璐WL3 小时前
【c++】c++第一课:命名空间
数据结构·c++·算法
aramae3 小时前
C++ -- 模板
开发语言·c++·笔记·其他
空白到白3 小时前
机器学习-聚类
人工智能·算法·机器学习·聚类
小马学嵌入式~3 小时前
嵌入式 SQLite 数据库开发笔记
linux·c语言·数据库·笔记·sql·学习·sqlite