24/8/14算法笔记 复习_支持向量机svc

支持向量机(Support Vector Machine, SVM)是一种强大的监督学习模型,用于分类、回归甚至异常检测。它基于统计学习理论,特别关注找到数据的最佳分隔超平面。

import numpy as np
import matplotlib.pyplot as plt
 
from sklearn.svm import SVC
from sklearn import datasets

X,y = datasets.make_blobs(n_samples= 100,#样本量
                          n_features=2,#二维数据,便于画图展示
                          centers = 2,#两块
                          random_state = 3)#随机数种子
plt.scatter(X[:,0],X[:,1],c=y)

#算法建模
svc = SVC(kernel = 'linear')
svc.fit(X,y)

#绘制分割线
w_ = svc.coef_#有两个特征
b_ = svc.intercept_
w = -w_[0,0]/w_[0,1]
b = -b_/w_[0,1]
sv = svc.support_vectors_  #当你使用像 scikit-learn 这样的库训练一个 SVM 模型时,support_vectors_ 包含了在模型训练过程中被选择为支持向量的样本点

x = np.linspace(-5,1,100)   #np.linspace函数可以生成一个包含固定数量元素的数组,这些元素均匀地分布在指定的区间内。这个函数在科学计算和数据分析中非常有用,因为它可以帮助你创建一个等间距的数值序列。
y_result = w*x+b
plt.scatter(X[:,0],X[:,1],c=y)
plt.plot(x,y_result,color = 'red')

#上下边界
b1 = sv[0][1] - w*sv[0][0]
plt.plot(x,w*x + b1,color = 'blue',ls = '--')

b2 = sv[-1][1] - w*sv[-1][0]
plt.plot(x,w*x+b2,color='blue',ls='--')

linspace为什么要这一步:

  1. 数值分析 :在数值分析中,经常需要在某个区间内对函数进行评估,linspace可以确保评估点均匀分布。

  2. 绘图:在绘图时,你可能需要在特定区间内均匀分布的x值来计算对应的y值,然后绘制函数图像。

  3. 函数评估:在评估函数的行为或特性时,均匀的点集可以帮助你更好地理解函数在不同区间的表现。

  4. 算法实现:某些算法可能需要在特定区间内均匀采样,以确保算法的准确性和公平性。

  5. 测试和验证:在测试函数或模型时,均匀的采样可以确保覆盖整个输入范围。

相关推荐
古希腊掌管学习的神10 分钟前
[搜广推]王树森推荐系统笔记——曝光过滤 & Bloom Filter
算法·推荐算法
qystca11 分钟前
洛谷 P1706 全排列问题 C语言
算法
浊酒南街16 分钟前
决策树(理论知识1)
算法·决策树·机器学习
就爱学编程24 分钟前
重生之我在异世界学编程之C语言小项目:通讯录
c语言·开发语言·数据结构·算法
oneouto24 分钟前
selenium学习笔记(二)
笔记·学习·selenium
学术头条29 分钟前
清华、智谱团队:探索 RLHF 的 scaling laws
人工智能·深度学习·算法·机器学习·语言模型·计算语言学
sealaugh3229 分钟前
aws(学习笔记第十九课) 使用ECS和Fargate进行容器开发
笔记·学习·aws
Schwertlilien1 小时前
图像处理-Ch4-频率域处理
算法
IT猿手1 小时前
最新高性能多目标优化算法:多目标麋鹿优化算法(MOEHO)求解TP1-TP10及工程应用---盘式制动器设计,提供完整MATLAB代码
开发语言·深度学习·算法·机器学习·matlab·多目标算法
__lost1 小时前
MATLAB直接推导函数的导函数和积分形式(具体方法和用例)
数学·算法·matlab·微积分·高等数学