24/8/14算法笔记 复习_支持向量机svc

支持向量机(Support Vector Machine, SVM)是一种强大的监督学习模型,用于分类、回归甚至异常检测。它基于统计学习理论,特别关注找到数据的最佳分隔超平面。

复制代码
import numpy as np
import matplotlib.pyplot as plt
 
from sklearn.svm import SVC
from sklearn import datasets

X,y = datasets.make_blobs(n_samples= 100,#样本量
                          n_features=2,#二维数据,便于画图展示
                          centers = 2,#两块
                          random_state = 3)#随机数种子
plt.scatter(X[:,0],X[:,1],c=y)

#算法建模
svc = SVC(kernel = 'linear')
svc.fit(X,y)

#绘制分割线
w_ = svc.coef_#有两个特征
b_ = svc.intercept_
w = -w_[0,0]/w_[0,1]
b = -b_/w_[0,1]
sv = svc.support_vectors_  #当你使用像 scikit-learn 这样的库训练一个 SVM 模型时,support_vectors_ 包含了在模型训练过程中被选择为支持向量的样本点

x = np.linspace(-5,1,100)   #np.linspace函数可以生成一个包含固定数量元素的数组,这些元素均匀地分布在指定的区间内。这个函数在科学计算和数据分析中非常有用,因为它可以帮助你创建一个等间距的数值序列。
y_result = w*x+b
plt.scatter(X[:,0],X[:,1],c=y)
plt.plot(x,y_result,color = 'red')

#上下边界
b1 = sv[0][1] - w*sv[0][0]
plt.plot(x,w*x + b1,color = 'blue',ls = '--')

b2 = sv[-1][1] - w*sv[-1][0]
plt.plot(x,w*x+b2,color='blue',ls='--')

linspace为什么要这一步:

  1. 数值分析 :在数值分析中,经常需要在某个区间内对函数进行评估,linspace可以确保评估点均匀分布。

  2. 绘图:在绘图时,你可能需要在特定区间内均匀分布的x值来计算对应的y值,然后绘制函数图像。

  3. 函数评估:在评估函数的行为或特性时,均匀的点集可以帮助你更好地理解函数在不同区间的表现。

  4. 算法实现:某些算法可能需要在特定区间内均匀采样,以确保算法的准确性和公平性。

  5. 测试和验证:在测试函数或模型时,均匀的采样可以确保覆盖整个输入范围。

相关推荐
夏鹏今天学习了吗7 小时前
【LeetCode热题100(82/100)】单词拆分
算法·leetcode·职场和发展
mit6.8248 小时前
mysql exe
算法
2501_901147838 小时前
动态规划在整除子集问题中的应用与高性能实现分析
算法·职场和发展·动态规划
中草药z9 小时前
【嵌入模型】概念、应用与两大 AI 开源社区(Hugging Face / 魔塔)
人工智能·算法·机器学习·数据集·向量·嵌入模型
知乎的哥廷根数学学派9 小时前
基于数据驱动的自适应正交小波基优化算法(Python)
开发语言·网络·人工智能·pytorch·python·深度学习·算法
ADI_OP9 小时前
ADAU1452的开发教程10:逻辑算法模块
算法·adi dsp中文资料·adi dsp·adi音频dsp·adi dsp开发教程·sigmadsp的开发详解
xingzhemengyou110 小时前
C语言 查找一个字符在字符串中第i次出现的位置
c语言·算法
摇滚侠11 小时前
三天学通 Groovy—Groovy 程序设计,Groovy 中的数据类型,笔记 1-13
笔记·groovy
wdfk_prog11 小时前
[Linux]学习笔记系列 -- [driver]base
linux·笔记·学习
am心11 小时前
学习笔记-套餐接口
笔记·学习