锂电池剩余寿命预测 | Matlab基于LSTM-Attention的锂电池剩余寿命预测

目录

预测效果





基本介绍

Matlab基于LSTM-Attention的锂电池剩余寿命预测(单变量),长短期记忆神经网络融合注意力机制(自注意力机制,多头注意力机制)(单变量)

运行环境Matlab2023b及以上。

首先从NASA数据集中提取电池容量特征,然后基于B0005号电池数据训练,用B0006号电池数据测试预测。

构建一个带有注意力机制的LSTM模型,以便在序列数据中学习长期依赖关系并关注重要的时间点。使用准备好的数据集对模型进行训练,使用测试集评估模型的性能。


程序设计

  • 完整程序和数据获取方式:私信博主回复Matlab基于LSTM-Attention的锂电池剩余寿命预测
matlab 复制代码
%% 清空环境
clear;%清工作区
clc;%清命令
close all;%关闭所有的Figure窗口 
format compact;%压缩空格
tic;%开始计时
%% 005号电池
load('B0005.mat')
m1=616; %有616个数据
n1=168; %有168个discharge放电数据
[~,index] = sortrows({B0005.cycle.type}.');
B0005.cycle = B0005.cycle(index);
clear index  %以上3行为将type排序
A=zeros(168,1); %A矩阵为168行1列的零矩阵
j=1;
for i=171:338
    A(j,1)=B0005.cycle(i).data.Capacity;
    i=i+1;
    j=j+1;
end
% 6号电池
load('B0006.mat')
m2=616;
n2=168;
[~,index] = sortrows({B0006.cycle.type}.');
B0006.cycle = B0006.cycle(index);
clear index
B=zeros(168,1);
j=1;
for i=171:338
    B(j,1)=B0006.cycle(i).data.Capacity;
    i=i+1;
    j=j+1;
end

参考资料

1\] http://t.csdn.cn/pCWSp \[2\] https://download.csdn.net/download/kjm13182345320/87568090?spm=1001.2014.3001.5501 \[3\] https://blog.csdn.net/kjm13182345320/article/details/129433463?spm=1001.2014.3001.5501

相关推荐
AI科技星5 小时前
张祥前统一场论的数学表述与概念梳理:从几何公设到统一场方程
人工智能·线性代数·算法·机器学习·矩阵·数据挖掘
丝斯20115 小时前
AI学习笔记整理(55)——大模型训练流程
人工智能·笔记·学习
GatiArt雷5 小时前
生成式AI重构开发流程:从工具到生产力的质变之路
人工智能
迎仔5 小时前
算力中心设备指南 (1):计算单元——从“全能经理”到“暴力施工队”
人工智能
程序员泠零澪回家种桔子5 小时前
MCP架构核心组件
人工智能·ai·架构
来两个炸鸡腿5 小时前
【Datawhale组队学习202601】Base-NLP task04 参数高效微调
人工智能·学习·自然语言处理
YH12312359h5 小时前
YOLO11-LSKNet钢材表面缺陷检测与分类系统详解
人工智能·分类·数据挖掘
aiguangyuan6 小时前
中文分词与文本分析实战指南
人工智能·python·nlp
小二·6 小时前
Python Web 开发进阶实战:量子机器学习实验平台 —— 在 Flask + Vue 中集成 Qiskit 构建混合量子-经典 AI 应用
前端·人工智能·python
AC赳赳老秦6 小时前
Confluence + DeepSeek:构建自动化、智能化的企业知识库文档生成与维护体系
大数据·运维·人工智能·自动化·jenkins·数据库架构·deepseek