锂电池剩余寿命预测 | Matlab基于LSTM-Attention的锂电池剩余寿命预测

目录

预测效果





基本介绍

Matlab基于LSTM-Attention的锂电池剩余寿命预测(单变量),长短期记忆神经网络融合注意力机制(自注意力机制,多头注意力机制)(单变量)

运行环境Matlab2023b及以上。

首先从NASA数据集中提取电池容量特征,然后基于B0005号电池数据训练,用B0006号电池数据测试预测。

构建一个带有注意力机制的LSTM模型,以便在序列数据中学习长期依赖关系并关注重要的时间点。使用准备好的数据集对模型进行训练,使用测试集评估模型的性能。


程序设计

  • 完整程序和数据获取方式:私信博主回复Matlab基于LSTM-Attention的锂电池剩余寿命预测
matlab 复制代码
%% 清空环境
clear;%清工作区
clc;%清命令
close all;%关闭所有的Figure窗口 
format compact;%压缩空格
tic;%开始计时
%% 005号电池
load('B0005.mat')
m1=616; %有616个数据
n1=168; %有168个discharge放电数据
[~,index] = sortrows({B0005.cycle.type}.');
B0005.cycle = B0005.cycle(index);
clear index  %以上3行为将type排序
A=zeros(168,1); %A矩阵为168行1列的零矩阵
j=1;
for i=171:338
    A(j,1)=B0005.cycle(i).data.Capacity;
    i=i+1;
    j=j+1;
end
% 6号电池
load('B0006.mat')
m2=616;
n2=168;
[~,index] = sortrows({B0006.cycle.type}.');
B0006.cycle = B0006.cycle(index);
clear index
B=zeros(168,1);
j=1;
for i=171:338
    B(j,1)=B0006.cycle(i).data.Capacity;
    i=i+1;
    j=j+1;
end

参考资料

1\] http://t.csdn.cn/pCWSp \[2\] https://download.csdn.net/download/kjm13182345320/87568090?spm=1001.2014.3001.5501 \[3\] https://blog.csdn.net/kjm13182345320/article/details/129433463?spm=1001.2014.3001.5501

相关推荐
霖大侠几秒前
Squeeze-and-Excitation Networks
人工智能·算法·机器学习·transformer
天竺鼠不该去劝架17 分钟前
财务自动化怎么做?财务RPA选型清单与路径
人工智能·科技·自动化
好奇龙猫37 分钟前
人工智能学习-AI-MIT公开课-第三节:推理:目标树与基于规则的专家系统-笔记
人工智能·笔记·学习
正经人_x39 分钟前
学习日记28:Run, Don’t Walk: Chasing Higher FLOPS for Faster Neural Networks
人工智能·深度学习·cnn
好奇龙猫39 分钟前
【AI学习-comfyUI学习-第二十节-controlnet线稿+softedge线稿处理器工作流艺术线处理器工作流-各个部分学习】
人工智能·学习
陈橘又青1 小时前
vLLM-Ascend推理部署与性能调优深度实战指南:架构解析、环境搭建与核心配置
人工智能·后端·ai·架构·restful·数据·vllm
世优科技虚拟人1 小时前
AI数字人企业产品图谱解析:2D/3D数字人AI交互开发技术指南
人工智能·大模型·人机交互·数字人·智能交互
LiFileHub1 小时前
2025 AI驱动产业转型全景手册:从技术破局到价值重生(附8大转型案例)
人工智能
python机器学习ML1 小时前
论文复现-以动物图像分类为例进行多模型性能对比分析
人工智能·python·神经网络·机器学习·计算机视觉·scikit-learn·sklearn
YANQ6621 小时前
14.1 人脸的三维重构(PRNet算法)
人工智能·重构