锂电池剩余寿命预测 | Matlab基于LSTM-Attention的锂电池剩余寿命预测

目录

预测效果





基本介绍

Matlab基于LSTM-Attention的锂电池剩余寿命预测(单变量),长短期记忆神经网络融合注意力机制(自注意力机制,多头注意力机制)(单变量)

运行环境Matlab2023b及以上。

首先从NASA数据集中提取电池容量特征,然后基于B0005号电池数据训练,用B0006号电池数据测试预测。

构建一个带有注意力机制的LSTM模型,以便在序列数据中学习长期依赖关系并关注重要的时间点。使用准备好的数据集对模型进行训练,使用测试集评估模型的性能。


程序设计

  • 完整程序和数据获取方式:私信博主回复Matlab基于LSTM-Attention的锂电池剩余寿命预测
matlab 复制代码
%% 清空环境
clear;%清工作区
clc;%清命令
close all;%关闭所有的Figure窗口 
format compact;%压缩空格
tic;%开始计时
%% 005号电池
load('B0005.mat')
m1=616; %有616个数据
n1=168; %有168个discharge放电数据
[~,index] = sortrows({B0005.cycle.type}.');
B0005.cycle = B0005.cycle(index);
clear index  %以上3行为将type排序
A=zeros(168,1); %A矩阵为168行1列的零矩阵
j=1;
for i=171:338
    A(j,1)=B0005.cycle(i).data.Capacity;
    i=i+1;
    j=j+1;
end
% 6号电池
load('B0006.mat')
m2=616;
n2=168;
[~,index] = sortrows({B0006.cycle.type}.');
B0006.cycle = B0006.cycle(index);
clear index
B=zeros(168,1);
j=1;
for i=171:338
    B(j,1)=B0006.cycle(i).data.Capacity;
    i=i+1;
    j=j+1;
end

参考资料

[1] http://t.csdn.cn/pCWSp

[2] https://download.csdn.net/download/kjm13182345320/87568090?spm=1001.2014.3001.5501

[3] https://blog.csdn.net/kjm13182345320/article/details/129433463?spm=1001.2014.3001.5501

相关推荐
ZHOU_WUYI3 小时前
3.langchain中的prompt模板 (few shot examples in chat models)
人工智能·langchain·prompt
如若1233 小时前
主要用于图像的颜色提取、替换以及区域修改
人工智能·opencv·计算机视觉
老艾的AI世界3 小时前
AI翻唱神器,一键用你喜欢的歌手翻唱他人的曲目(附下载链接)
人工智能·深度学习·神经网络·机器学习·ai·ai翻唱·ai唱歌·ai歌曲
DK221513 小时前
机器学习系列----关联分析
人工智能·机器学习
Robot2514 小时前
Figure 02迎重大升级!!人形机器人独角兽[Figure AI]商业化加速
人工智能·机器人·微信公众平台
浊酒南街4 小时前
Statsmodels之OLS回归
人工智能·数据挖掘·回归
Evand J4 小时前
集合卡尔曼滤波(Ensemble Kalman Filter),用于二维滤波(模拟平面上的目标跟踪),MATLAB代码
matlab·平面·目标跟踪
畅联云平台5 小时前
美畅物联丨智能分析,安全管控:视频汇聚平台助力智慧工地建设
人工智能·物联网
加密新世界5 小时前
优化 Solana 程序
人工智能·算法·计算机视觉
hunteritself5 小时前
ChatGPT高级语音模式正在向Web网页端推出!
人工智能·gpt·chatgpt·openai·语音识别