机械学习—零基础学习日志(如何理解线性代数2)

零基础为了学人工智能,正在快乐学习,每天都长脑子

引言

在平面中,直线的定义可以理解为,任意缩放同一个平面向量得到所有点的集合。

所以要得到一个三维空间中的直线,只需要将这个向量改成三维向量即可。

什么是线性空间

线性空间就是一些向量的集合,所以线性空间有时也被说为向量空间。

线性空间需要在线性组合下封闭。也就是线性空中的向量乘以一个实数,或者这个空间任意多的向量组合所形成的向量依然在此线性空间。

线性空间不存在弯曲的平面。线性空间也没有边界。

如何表示线性空间

信息空间可以被两个向量任意组合表示所有向量。那这两个向量可以称为生成向量。

span内部写上生成向量。生存空间所组合的所有向量其实可以理解为张成的线性空间。

这个线性空间是通过组合这个矩阵各列向量得到的。所以他也被称为这个矩阵的列空间。

对于任何一个线性空间,我们都有无数个线性映射。可以刚好让这个线性空间成为他的值域。

维度就是生成一个线性空间所需要的最少生成向量。

那为什么两个生成向量,却只能生成一个一维空间。出现这种情况的原因是坍缩。一个平面中有一条线,最后被压缩到一个点上。

什么是线性相关

就是两个向量共线导致输出的空间坍塌。所以无论怎么组合,他们本质上还是在一条一维的直线上。在三维的例子里也是因为它们都共面了,所以输出的空间坍塌。

什么是线性无关

如果一组向量可以用不是全零的系数组合,得到零向量,就意味着他们线性无关。

什么是矩阵的秩?

维度的数量也就是我们能够在矩阵的列向量中,选出最多线性无关的个数,这就是矩阵的秩。

主要参考:线性代数很难学?因为没有深刻理解这个概念【无痛线代】 up主:漫士沉思录

非常非常非常推荐,这位UP主讲解的视频!!!

相关推荐
极度畅想6 分钟前
脑电模型实战系列(三):基于 KNN 的 DEAP 脑电情绪识别 KNN 算法与 Canberra 距离深度剖析(三)
机器学习·knn·脑机接口·情绪识别·bci·canberra距离
Swizard14 分钟前
别再只会算直线距离了!用“马氏距离”揪出那个伪装的数据“卧底”
python·算法·ai
flashlight_hi34 分钟前
LeetCode 分类刷题:199. 二叉树的右视图
javascript·算法·leetcode
一个没有感情的程序猿36 分钟前
前端实现人体骨架检测与姿态对比:基于 MediaPipe 的完整方案
机器学习·计算机视觉·前端框架·开源
LYFlied36 分钟前
【每日算法】LeetCode 46. 全排列
前端·算法·leetcode·面试·职场和发展
2301_8234380236 分钟前
【无标题】解析《采用非对称自玩实现强健多机器人群集的深度强化学习方法》
数据库·人工智能·算法
oscar99939 分钟前
CSP-J教程——第二阶段第十二、十三课:排序与查找算法
数据结构·算法·排序算法
Dev7z43 分钟前
基于Stanley算法的自动驾驶车辆路径跟踪控制研究
人工智能·机器学习·自动驾驶
chao1898441 小时前
MATLAB与HFSS联合仿真
算法
月明长歌1 小时前
【码道初阶】牛客TSINGK110:二叉树遍历(较难)如何根据“扩展先序遍历”构建二叉树?
java·数据结构·算法