机械学习—零基础学习日志(如何理解线性代数2)

零基础为了学人工智能,正在快乐学习,每天都长脑子

引言

在平面中,直线的定义可以理解为,任意缩放同一个平面向量得到所有点的集合。

所以要得到一个三维空间中的直线,只需要将这个向量改成三维向量即可。

什么是线性空间

线性空间就是一些向量的集合,所以线性空间有时也被说为向量空间。

线性空间需要在线性组合下封闭。也就是线性空中的向量乘以一个实数,或者这个空间任意多的向量组合所形成的向量依然在此线性空间。

线性空间不存在弯曲的平面。线性空间也没有边界。

如何表示线性空间

信息空间可以被两个向量任意组合表示所有向量。那这两个向量可以称为生成向量。

span内部写上生成向量。生存空间所组合的所有向量其实可以理解为张成的线性空间。

这个线性空间是通过组合这个矩阵各列向量得到的。所以他也被称为这个矩阵的列空间。

对于任何一个线性空间,我们都有无数个线性映射。可以刚好让这个线性空间成为他的值域。

维度就是生成一个线性空间所需要的最少生成向量。

那为什么两个生成向量,却只能生成一个一维空间。出现这种情况的原因是坍缩。一个平面中有一条线,最后被压缩到一个点上。

什么是线性相关

就是两个向量共线导致输出的空间坍塌。所以无论怎么组合,他们本质上还是在一条一维的直线上。在三维的例子里也是因为它们都共面了,所以输出的空间坍塌。

什么是线性无关

如果一组向量可以用不是全零的系数组合,得到零向量,就意味着他们线性无关。

什么是矩阵的秩?

维度的数量也就是我们能够在矩阵的列向量中,选出最多线性无关的个数,这就是矩阵的秩。

主要参考:线性代数很难学?因为没有深刻理解这个概念【无痛线代】 up主:漫士沉思录

非常非常非常推荐,这位UP主讲解的视频!!!

相关推荐
格林威21 分钟前
常规线扫描镜头有哪些类型?能做什么?
人工智能·深度学习·数码相机·算法·计算机视觉·视觉检测·工业镜头
递归不收敛1 小时前
吴恩达机器学习课程(PyTorch 适配)学习笔记:3.3 推荐系统全面解析
pytorch·学习·机器学习
IT森林里的程序猿2 小时前
基于机器学习方法的网球比赛胜负趋势预测
python·机器学习·django
正牌强哥2 小时前
Futures_ML——机器学习在期货量化交易中的应用与实践
人工智能·python·机器学习·ai·交易·akshare
程序员莫小特2 小时前
老题新解|大整数加法
数据结构·c++·算法
shelter -唯3 小时前
京东手机项目:手机受欢迎的影响因素分析
python·机器学习·智能手机
过往入尘土3 小时前
服务端与客户端的简单链接
人工智能·python·算法·pycharm·大模型
zycoder.3 小时前
力扣面试经典150题day1第一题(lc88),第二题(lc27)
算法·leetcode·面试
蒙奇D索大4 小时前
【数据结构】考研数据结构核心考点:二叉排序树(BST)全方位详解与代码实现
数据结构·笔记·学习·考研·算法·改行学it
智驱力人工智能4 小时前
工厂抽烟检测系统 智能化安全管控新方案 加油站吸烟检测技术 吸烟行为智能监测
人工智能·算法·安全·边缘计算·抽烟检测算法·工厂抽烟检测系统·吸烟监测