机械学习—零基础学习日志(如何理解线性代数2)

零基础为了学人工智能,正在快乐学习,每天都长脑子

引言

在平面中,直线的定义可以理解为,任意缩放同一个平面向量得到所有点的集合。

所以要得到一个三维空间中的直线,只需要将这个向量改成三维向量即可。

什么是线性空间

线性空间就是一些向量的集合,所以线性空间有时也被说为向量空间。

线性空间需要在线性组合下封闭。也就是线性空中的向量乘以一个实数,或者这个空间任意多的向量组合所形成的向量依然在此线性空间。

线性空间不存在弯曲的平面。线性空间也没有边界。

如何表示线性空间

信息空间可以被两个向量任意组合表示所有向量。那这两个向量可以称为生成向量。

span内部写上生成向量。生存空间所组合的所有向量其实可以理解为张成的线性空间。

这个线性空间是通过组合这个矩阵各列向量得到的。所以他也被称为这个矩阵的列空间。

对于任何一个线性空间,我们都有无数个线性映射。可以刚好让这个线性空间成为他的值域。

维度就是生成一个线性空间所需要的最少生成向量。

那为什么两个生成向量,却只能生成一个一维空间。出现这种情况的原因是坍缩。一个平面中有一条线,最后被压缩到一个点上。

什么是线性相关

就是两个向量共线导致输出的空间坍塌。所以无论怎么组合,他们本质上还是在一条一维的直线上。在三维的例子里也是因为它们都共面了,所以输出的空间坍塌。

什么是线性无关

如果一组向量可以用不是全零的系数组合,得到零向量,就意味着他们线性无关。

什么是矩阵的秩?

维度的数量也就是我们能够在矩阵的列向量中,选出最多线性无关的个数,这就是矩阵的秩。

主要参考:线性代数很难学?因为没有深刻理解这个概念【无痛线代】 up主:漫士沉思录

非常非常非常推荐,这位UP主讲解的视频!!!

相关推荐
ysh98883 分钟前
PP-OCR:一款实用的超轻量级OCR系统
算法
遇雪长安19 分钟前
差分定位技术:原理、分类与应用场景
算法·分类·数据挖掘·rtk·差分定位
数通Dinner23 分钟前
RSTP 拓扑收敛机制
网络·网络协议·tcp/ip·算法·信息与通信
Blossom.1181 小时前
机器学习在智能制造业中的应用:质量检测与设备故障预测
人工智能·深度学习·神经网络·机器学习·机器人·tensorflow·sklearn
巴伦是只猫1 小时前
【机器学习笔记 Ⅱ】1 神经网络
笔记·神经网络·机器学习
烟锁池塘柳02 小时前
【深度学习】强化学习(Reinforcement Learning, RL)主流架构解析
人工智能·深度学习·机器学习
张人玉2 小时前
C# 常量与变量
java·算法·c#
峙峙峙3 小时前
线性代数--AI数学基础复习
人工智能·线性代数
weixin_446122463 小时前
LinkedList剖析
算法
百年孤独_4 小时前
LeetCode 算法题解:链表与二叉树相关问题 打打卡
算法·leetcode·链表