机械学习—零基础学习日志(如何理解线性代数2)

零基础为了学人工智能,正在快乐学习,每天都长脑子

引言

在平面中,直线的定义可以理解为,任意缩放同一个平面向量得到所有点的集合。

所以要得到一个三维空间中的直线,只需要将这个向量改成三维向量即可。

什么是线性空间

线性空间就是一些向量的集合,所以线性空间有时也被说为向量空间。

线性空间需要在线性组合下封闭。也就是线性空中的向量乘以一个实数,或者这个空间任意多的向量组合所形成的向量依然在此线性空间。

线性空间不存在弯曲的平面。线性空间也没有边界。

如何表示线性空间

信息空间可以被两个向量任意组合表示所有向量。那这两个向量可以称为生成向量。

span内部写上生成向量。生存空间所组合的所有向量其实可以理解为张成的线性空间。

这个线性空间是通过组合这个矩阵各列向量得到的。所以他也被称为这个矩阵的列空间。

对于任何一个线性空间,我们都有无数个线性映射。可以刚好让这个线性空间成为他的值域。

维度就是生成一个线性空间所需要的最少生成向量。

那为什么两个生成向量,却只能生成一个一维空间。出现这种情况的原因是坍缩。一个平面中有一条线,最后被压缩到一个点上。

什么是线性相关

就是两个向量共线导致输出的空间坍塌。所以无论怎么组合,他们本质上还是在一条一维的直线上。在三维的例子里也是因为它们都共面了,所以输出的空间坍塌。

什么是线性无关

如果一组向量可以用不是全零的系数组合,得到零向量,就意味着他们线性无关。

什么是矩阵的秩?

维度的数量也就是我们能够在矩阵的列向量中,选出最多线性无关的个数,这就是矩阵的秩。

主要参考:线性代数很难学?因为没有深刻理解这个概念【无痛线代】 up主:漫士沉思录

非常非常非常推荐,这位UP主讲解的视频!!!

相关推荐
ocr_sinosecu15 小时前
OCR定制识别:解锁文字识别的无限可能
人工智能·机器学习·ocr
何其有幸.5 小时前
实验3-3 比较大小(PTA|C语言)
c语言·数据结构·算法
奋斗者1号5 小时前
分类数据处理全解析:从独热编码到高维特征优化
人工智能·机器学习·分类
学渣676566 小时前
【10分钟读论文】Power Transmission Line Inspections电力视觉水文
机器学习
东阳马生架构6 小时前
Sentinel源码—8.限流算法和设计模式总结二
算法·设计模式·sentinel
老饼讲解-BP神经网络7 小时前
一篇入门之-评分卡变量分箱(卡方分箱、决策树分箱、KS分箱等)实操例子
算法·决策树·机器学习
何其有幸.7 小时前
实验6-3 使用函数求特殊a串数列和(PTA|C语言)
c语言·数据结构·算法
不会计算机的捞地7 小时前
【数据结构入门训练DAY-24】美国大选
数据结构·算法
小墙程序员7 小时前
机器学习入门(五)聚类算法
机器学习
明月看潮生7 小时前
青少年编程与数学 02-018 C++数据结构与算法 11课题、分治
c++·算法·青少年编程·编程与数学