讲解机器学习中的 K-均值聚类算法及其优缺点。

K-均值聚类算法是机器学习中一种常用的无监督学习算法,用于将数据集中的样本分为 K 个不同的类别。

算法步骤如下:

  1. 选择 K 个初始的中心点(聚类中心)作为初始的类别中心。
  2. 将数据集中的每个样本点分配到距离其最近的中心点所在的类别中。
  3. 重新计算每个类别的中心点,即将类别内的样本点的均值作为新的中心点。
  4. 重复第2步和第3步,直到类别中心的位置不再发生变化,或达到指定的迭代次数。

K-均值聚类算法的优点如下:

  1. 简单易实现:K-均值算法的基本思想简单,算法步骤清晰,易于理解和实现。
  2. 效率高:K-均值算法对于大规模数据集也有较好的扩展性,算法的时间复杂度较低。
  3. 可解释性强:K-均值算法的结果较为直观,聚类结果对应着样本点所在的类别。

K-均值聚类算法的缺点如下:

  1. 初始中心点的选择对结果有影响:初始中心点的选择对算法的结果有较大的影响,不同的初始点可能导致不同的聚类结果。
  2. 对异常值敏感:K-均值算法对异常值(离群点)较为敏感,异常值可能会对聚类结果产生较大的影响。
  3. 需要事先指定类别数:K-均值算法需要事先指定聚类的类别数 K,这对于某些应用场景来说可能是一个难以确定的参数。

需要注意的是,K-均值聚类算法是一种基于距离度量的聚类方法,适合于处理数值型数据。对于非数值型数据,需要将其转换为数值型数据进行处理。

相关推荐
Swift社区5 分钟前
Swift 图论实战:DFS 算法解锁 LeetCode 323 连通分量个数
算法·swift·图论
<但凡.8 分钟前
数据结构与算法之美:广义表
数据结构·c++·算法
前端极客探险家19 分钟前
告别卡顿与慢响应!现代 Web 应用性能优化:从前端渲染到后端算法的全面提速指南
前端·算法·性能优化
程序员Xu1 小时前
【OD机试题解法笔记】连续出牌数量
笔记·算法·深度优先
CoovallyAIHub1 小时前
单目深度估计重大突破:无需标签,精度超越 SOTA!西湖大学团队提出多教师蒸馏新方案
深度学习·算法·计算机视觉
CoovallyAIHub1 小时前
从FCOS3D到PGD:看深度估计如何快速搭建你的3D检测项目
深度学习·算法·计算机视觉
九章云极AladdinEdu1 小时前
华为昇腾NPU与NVIDIA CUDA生态兼容层开发实录:手写算子自动转换工具链(AST级代码迁移方案)
人工智能·深度学习·opencv·机器学习·华为·数据挖掘·gpu算力
feifeikon1 小时前
SFT与Lora
人工智能·深度学习·机器学习
马特说2 小时前
金融时间序列机器学习训练前的数据格式验证系统设计与实现
python·机器学习·金融
偷偷的卷2 小时前
【算法笔记 day three】滑动窗口(其他类型)
数据结构·笔记·python·学习·算法·leetcode