讲解机器学习中的 K-均值聚类算法及其优缺点。

K-均值聚类算法是机器学习中一种常用的无监督学习算法,用于将数据集中的样本分为 K 个不同的类别。

算法步骤如下:

  1. 选择 K 个初始的中心点(聚类中心)作为初始的类别中心。
  2. 将数据集中的每个样本点分配到距离其最近的中心点所在的类别中。
  3. 重新计算每个类别的中心点,即将类别内的样本点的均值作为新的中心点。
  4. 重复第2步和第3步,直到类别中心的位置不再发生变化,或达到指定的迭代次数。

K-均值聚类算法的优点如下:

  1. 简单易实现:K-均值算法的基本思想简单,算法步骤清晰,易于理解和实现。
  2. 效率高:K-均值算法对于大规模数据集也有较好的扩展性,算法的时间复杂度较低。
  3. 可解释性强:K-均值算法的结果较为直观,聚类结果对应着样本点所在的类别。

K-均值聚类算法的缺点如下:

  1. 初始中心点的选择对结果有影响:初始中心点的选择对算法的结果有较大的影响,不同的初始点可能导致不同的聚类结果。
  2. 对异常值敏感:K-均值算法对异常值(离群点)较为敏感,异常值可能会对聚类结果产生较大的影响。
  3. 需要事先指定类别数:K-均值算法需要事先指定聚类的类别数 K,这对于某些应用场景来说可能是一个难以确定的参数。

需要注意的是,K-均值聚类算法是一种基于距离度量的聚类方法,适合于处理数值型数据。对于非数值型数据,需要将其转换为数值型数据进行处理。

相关推荐
TracyCoder1231 分钟前
机器学习与深度学习基础(五):深度神经网络经典架构简介
深度学习·机器学习·dnn
宁大小白7 分钟前
pythonstudy Day31
python·机器学习
xiaoxiaoxiaolll11 分钟前
智能计算模拟:第一性原理+分子动力学+机器学习
人工智能·机器学习
我爱鸢尾花28 分钟前
第十四章聚类方法理论及Python实现
大数据·python·机器学习·数据挖掘·数据分析·聚类
s090713628 分钟前
Xilinx FPGA 中ADC 数据下变频+ CIC 滤波
算法·fpga开发·fpga·zynq
秋刀鱼 ..1 小时前
第二届光电科学与智能传感国际学术会议(ICOIS 2026)
运维·人工智能·科技·机器学习·制造
TL滕1 小时前
从0开始学算法——第十二天(KMP算法练习)
笔记·学习·算法
Math_teacher_fan2 小时前
第二篇:核心几何工具类详解
人工智能·算法
汉克老师2 小时前
CCF-NOI2025第二试题目与解析(第二题、集合(set))
c++·算法·noi·子集卷积·sos dp·mod 异常
mit6.8242 小时前
presum|
算法