讲解机器学习中的 K-均值聚类算法及其优缺点。

K-均值聚类算法是机器学习中一种常用的无监督学习算法,用于将数据集中的样本分为 K 个不同的类别。

算法步骤如下:

  1. 选择 K 个初始的中心点(聚类中心)作为初始的类别中心。
  2. 将数据集中的每个样本点分配到距离其最近的中心点所在的类别中。
  3. 重新计算每个类别的中心点,即将类别内的样本点的均值作为新的中心点。
  4. 重复第2步和第3步,直到类别中心的位置不再发生变化,或达到指定的迭代次数。

K-均值聚类算法的优点如下:

  1. 简单易实现:K-均值算法的基本思想简单,算法步骤清晰,易于理解和实现。
  2. 效率高:K-均值算法对于大规模数据集也有较好的扩展性,算法的时间复杂度较低。
  3. 可解释性强:K-均值算法的结果较为直观,聚类结果对应着样本点所在的类别。

K-均值聚类算法的缺点如下:

  1. 初始中心点的选择对结果有影响:初始中心点的选择对算法的结果有较大的影响,不同的初始点可能导致不同的聚类结果。
  2. 对异常值敏感:K-均值算法对异常值(离群点)较为敏感,异常值可能会对聚类结果产生较大的影响。
  3. 需要事先指定类别数:K-均值算法需要事先指定聚类的类别数 K,这对于某些应用场景来说可能是一个难以确定的参数。

需要注意的是,K-均值聚类算法是一种基于距离度量的聚类方法,适合于处理数值型数据。对于非数值型数据,需要将其转换为数值型数据进行处理。

相关推荐
臭东西的学习笔记5 小时前
论文学习——机器学习引导的蛋白质工程
人工智能·学习·机器学习
清酒难咽5 小时前
算法案例之递归
c++·经验分享·算法
让我上个超影吧5 小时前
【力扣26&80】删除有序数组中的重复项
算法·leetcode
张张努力变强6 小时前
C++ Date日期类的设计与实现全解析
java·开发语言·c++·算法
沉默-_-6 小时前
力扣hot100滑动窗口(C++)
数据结构·c++·学习·算法·滑动窗口
钱彬 (Qian Bin)6 小时前
项目实践19—全球证件智能识别系统(优化检索算法:从MobileNet转EfficientNet)
算法·全球证件识别
feifeigo1236 小时前
基于EM算法的混合Copula MATLAB实现
开发语言·算法·matlab
漫随流水7 小时前
leetcode回溯算法(78.子集)
数据结构·算法·leetcode·回溯算法
IT猿手7 小时前
六种智能优化算法(NOA、MA、PSO、GA、ZOA、SWO)求解23个基准测试函数(含参考文献及MATLAB代码)
开发语言·算法·matlab·无人机·无人机路径规划·最新多目标优化算法
We་ct7 小时前
LeetCode 151. 反转字符串中的单词:两种解法深度剖析
前端·算法·leetcode·typescript