讲解机器学习中的 K-均值聚类算法及其优缺点。

K-均值聚类算法是机器学习中一种常用的无监督学习算法,用于将数据集中的样本分为 K 个不同的类别。

算法步骤如下:

  1. 选择 K 个初始的中心点(聚类中心)作为初始的类别中心。
  2. 将数据集中的每个样本点分配到距离其最近的中心点所在的类别中。
  3. 重新计算每个类别的中心点,即将类别内的样本点的均值作为新的中心点。
  4. 重复第2步和第3步,直到类别中心的位置不再发生变化,或达到指定的迭代次数。

K-均值聚类算法的优点如下:

  1. 简单易实现:K-均值算法的基本思想简单,算法步骤清晰,易于理解和实现。
  2. 效率高:K-均值算法对于大规模数据集也有较好的扩展性,算法的时间复杂度较低。
  3. 可解释性强:K-均值算法的结果较为直观,聚类结果对应着样本点所在的类别。

K-均值聚类算法的缺点如下:

  1. 初始中心点的选择对结果有影响:初始中心点的选择对算法的结果有较大的影响,不同的初始点可能导致不同的聚类结果。
  2. 对异常值敏感:K-均值算法对异常值(离群点)较为敏感,异常值可能会对聚类结果产生较大的影响。
  3. 需要事先指定类别数:K-均值算法需要事先指定聚类的类别数 K,这对于某些应用场景来说可能是一个难以确定的参数。

需要注意的是,K-均值聚类算法是一种基于距离度量的聚类方法,适合于处理数值型数据。对于非数值型数据,需要将其转换为数值型数据进行处理。

相关推荐
nju_spy19 分钟前
周志华《机器学习导论》第8章 集成学习 Ensemble Learning
人工智能·随机森林·机器学习·集成学习·boosting·bagging·南京大学
呆呆的小鳄鱼20 分钟前
leetcode:冗余连接 II[并查集检查环][节点入度]
算法·leetcode·职场和发展
墨染点香21 分钟前
LeetCode Hot100【6. Z 字形变换】
java·算法·leetcode
沧澜sincerely21 分钟前
排序【各种题型+对应LeetCode习题练习】
算法·leetcode·排序算法
CQ_071222 分钟前
自学力扣:最长连续序列
数据结构·算法·leetcode
弥彦_37 分钟前
cf1925B&C
数据结构·算法
星座52840 分钟前
基于现代R语言【Tidyverse、Tidymodel】的机器学习方法与案例分析
机器学习·r语言·tidyverse·tidymodel
YuTaoShao1 小时前
【LeetCode 热题 100】994. 腐烂的橘子——BFS
java·linux·算法·leetcode·宽度优先
石迹耿千秋6 小时前
迁移学习--基于torchvision中VGG16模型的实战
人工智能·pytorch·机器学习·迁移学习
Wendy14419 小时前
【线性回归(最小二乘法MSE)】——机器学习
算法·机器学习·线性回归