讲解机器学习中的 K-均值聚类算法及其优缺点。

K-均值聚类算法是机器学习中一种常用的无监督学习算法,用于将数据集中的样本分为 K 个不同的类别。

算法步骤如下:

  1. 选择 K 个初始的中心点(聚类中心)作为初始的类别中心。
  2. 将数据集中的每个样本点分配到距离其最近的中心点所在的类别中。
  3. 重新计算每个类别的中心点,即将类别内的样本点的均值作为新的中心点。
  4. 重复第2步和第3步,直到类别中心的位置不再发生变化,或达到指定的迭代次数。

K-均值聚类算法的优点如下:

  1. 简单易实现:K-均值算法的基本思想简单,算法步骤清晰,易于理解和实现。
  2. 效率高:K-均值算法对于大规模数据集也有较好的扩展性,算法的时间复杂度较低。
  3. 可解释性强:K-均值算法的结果较为直观,聚类结果对应着样本点所在的类别。

K-均值聚类算法的缺点如下:

  1. 初始中心点的选择对结果有影响:初始中心点的选择对算法的结果有较大的影响,不同的初始点可能导致不同的聚类结果。
  2. 对异常值敏感:K-均值算法对异常值(离群点)较为敏感,异常值可能会对聚类结果产生较大的影响。
  3. 需要事先指定类别数:K-均值算法需要事先指定聚类的类别数 K,这对于某些应用场景来说可能是一个难以确定的参数。

需要注意的是,K-均值聚类算法是一种基于距离度量的聚类方法,适合于处理数值型数据。对于非数值型数据,需要将其转换为数值型数据进行处理。

相关推荐
梨子串桃子_3 小时前
推荐系统学习笔记 | PyTorch学习笔记
pytorch·笔记·python·学习·算法
爱喝可乐的老王3 小时前
机器学习中常用交叉验证总结
人工智能·机器学习
夏鹏今天学习了吗3 小时前
【LeetCode热题100(83/100)】最长递增子序列
算法·leetcode·职场和发展
情缘晓梦.4 小时前
C语言指针进阶
java·开发语言·算法
北邮刘老师4 小时前
智能体治理:人工智能时代信息化系统的全新挑战与课题
大数据·人工智能·算法·机器学习·智能体互联网
高锰酸钾_5 小时前
机器学习-L1正则化和L2正则化解决过拟合问题
人工智能·python·机器学习
AlenTech5 小时前
155. 最小栈 - 力扣(LeetCode)
算法·leetcode·职场和发展
啊巴矲5 小时前
小白从零开始勇闯人工智能:机器学习初级篇(PCA数据降维)
人工智能·机器学习
mit6.8245 小时前
正反两次扫描|单调性cut
算法
Yzzz-F5 小时前
牛客小白月赛127 E
算法