讲解机器学习中的 K-均值聚类算法及其优缺点。

K-均值聚类算法是机器学习中一种常用的无监督学习算法,用于将数据集中的样本分为 K 个不同的类别。

算法步骤如下:

  1. 选择 K 个初始的中心点(聚类中心)作为初始的类别中心。
  2. 将数据集中的每个样本点分配到距离其最近的中心点所在的类别中。
  3. 重新计算每个类别的中心点,即将类别内的样本点的均值作为新的中心点。
  4. 重复第2步和第3步,直到类别中心的位置不再发生变化,或达到指定的迭代次数。

K-均值聚类算法的优点如下:

  1. 简单易实现:K-均值算法的基本思想简单,算法步骤清晰,易于理解和实现。
  2. 效率高:K-均值算法对于大规模数据集也有较好的扩展性,算法的时间复杂度较低。
  3. 可解释性强:K-均值算法的结果较为直观,聚类结果对应着样本点所在的类别。

K-均值聚类算法的缺点如下:

  1. 初始中心点的选择对结果有影响:初始中心点的选择对算法的结果有较大的影响,不同的初始点可能导致不同的聚类结果。
  2. 对异常值敏感:K-均值算法对异常值(离群点)较为敏感,异常值可能会对聚类结果产生较大的影响。
  3. 需要事先指定类别数:K-均值算法需要事先指定聚类的类别数 K,这对于某些应用场景来说可能是一个难以确定的参数。

需要注意的是,K-均值聚类算法是一种基于距离度量的聚类方法,适合于处理数值型数据。对于非数值型数据,需要将其转换为数值型数据进行处理。

相关推荐
武子康12 分钟前
AI-调查研究-107-具身智能 强化学习与机器人训练数据格式解析:从状态-动作对到多模态轨迹标准
人工智能·深度学习·机器学习·ai·系统架构·机器人·具身智能
BanyeBirth18 分钟前
C++动态规划——LIS(最长不下降子序列)
算法·动态规划
小龙报19 分钟前
《算法通关指南---C++编程篇(3)》
开发语言·c++·算法·visualstudio·学习方法·visual studio
凤山老林24 分钟前
排序算法:详解插入排序
java·开发语言·后端·算法·排序算法
大千AI助手1 小时前
加权分位数直方图:提升机器学习效能的关键技术
人工智能·机器学习·xgboost·直方图·加权直方图·特征分裂
知星小度S1 小时前
算法训练之多源BFS
算法·宽度优先
2201_758875441 小时前
LeetCode:19. 删除链表的倒数第 N 个结点
算法·leetcode·链表
AI数据皮皮侠2 小时前
中国博物馆数据
大数据·人工智能·python·深度学习·机器学习
强哥之神2 小时前
从零理解 KV Cache:大语言模型推理加速的核心机制
人工智能·深度学习·机器学习·语言模型·llm·kvcache
代码不停2 小时前
Java前缀和算法题目练习
java·开发语言·算法