讲解机器学习中的 K-均值聚类算法及其优缺点。

K-均值聚类算法是机器学习中一种常用的无监督学习算法,用于将数据集中的样本分为 K 个不同的类别。

算法步骤如下:

  1. 选择 K 个初始的中心点(聚类中心)作为初始的类别中心。
  2. 将数据集中的每个样本点分配到距离其最近的中心点所在的类别中。
  3. 重新计算每个类别的中心点,即将类别内的样本点的均值作为新的中心点。
  4. 重复第2步和第3步,直到类别中心的位置不再发生变化,或达到指定的迭代次数。

K-均值聚类算法的优点如下:

  1. 简单易实现:K-均值算法的基本思想简单,算法步骤清晰,易于理解和实现。
  2. 效率高:K-均值算法对于大规模数据集也有较好的扩展性,算法的时间复杂度较低。
  3. 可解释性强:K-均值算法的结果较为直观,聚类结果对应着样本点所在的类别。

K-均值聚类算法的缺点如下:

  1. 初始中心点的选择对结果有影响:初始中心点的选择对算法的结果有较大的影响,不同的初始点可能导致不同的聚类结果。
  2. 对异常值敏感:K-均值算法对异常值(离群点)较为敏感,异常值可能会对聚类结果产生较大的影响。
  3. 需要事先指定类别数:K-均值算法需要事先指定聚类的类别数 K,这对于某些应用场景来说可能是一个难以确定的参数。

需要注意的是,K-均值聚类算法是一种基于距离度量的聚类方法,适合于处理数值型数据。对于非数值型数据,需要将其转换为数值型数据进行处理。

相关推荐
এ᭄画画的北北几秒前
力扣-102.二叉树的层序遍历
数据结构·算法·leetcode
ccLianLian几秒前
数据结构·字典树
数据结构·算法
kovlistudio27 分钟前
机器学习第十三讲:独热编码 → 把“红黄蓝“颜色变成001/010/100的数字格式
人工智能·机器学习
豆豆31 分钟前
机器学习 day03
人工智能·机器学习
JeffersonZU2 小时前
【数据结构】1-4算法的空间复杂度
c语言·数据结构·算法
L_cl2 小时前
【Python 算法零基础 4.排序 ① 选择排序】
数据结构·算法·排序算法
山北雨夜漫步3 小时前
机器学习 Day18 Support Vector Machine ——最优美的机器学习算法
人工智能·算法·机器学习
拼好饭和她皆失3 小时前
算法加训之最短路 上(dijkstra算法)
算法
qq_368019664 小时前
人工智能、机器学习、深度学习定义与联系
人工智能·深度学习·机器学习
追逐☞4 小时前
机器学习(13)——LGBM(2)
人工智能·机器学习