讲解机器学习中的 K-均值聚类算法及其优缺点。

K-均值聚类算法是机器学习中一种常用的无监督学习算法,用于将数据集中的样本分为 K 个不同的类别。

算法步骤如下:

  1. 选择 K 个初始的中心点(聚类中心)作为初始的类别中心。
  2. 将数据集中的每个样本点分配到距离其最近的中心点所在的类别中。
  3. 重新计算每个类别的中心点,即将类别内的样本点的均值作为新的中心点。
  4. 重复第2步和第3步,直到类别中心的位置不再发生变化,或达到指定的迭代次数。

K-均值聚类算法的优点如下:

  1. 简单易实现:K-均值算法的基本思想简单,算法步骤清晰,易于理解和实现。
  2. 效率高:K-均值算法对于大规模数据集也有较好的扩展性,算法的时间复杂度较低。
  3. 可解释性强:K-均值算法的结果较为直观,聚类结果对应着样本点所在的类别。

K-均值聚类算法的缺点如下:

  1. 初始中心点的选择对结果有影响:初始中心点的选择对算法的结果有较大的影响,不同的初始点可能导致不同的聚类结果。
  2. 对异常值敏感:K-均值算法对异常值(离群点)较为敏感,异常值可能会对聚类结果产生较大的影响。
  3. 需要事先指定类别数:K-均值算法需要事先指定聚类的类别数 K,这对于某些应用场景来说可能是一个难以确定的参数。

需要注意的是,K-均值聚类算法是一种基于距离度量的聚类方法,适合于处理数值型数据。对于非数值型数据,需要将其转换为数值型数据进行处理。

相关推荐
元智启18 分钟前
企业AI应用面临“敏捷响应”难题:快速变化的业务与相对滞后的智能如何同步?
人工智能·深度学习·机器学习
m0_7482500342 分钟前
C++ 信号处理
c++·算法·信号处理
Ro Jace42 分钟前
电子侦察信号处理流程及常用算法
算法·信号处理
yuyanjingtao1 小时前
动态规划 背包 之 凑钱
c++·算法·青少年编程·动态规划·gesp·csp-j/s
Hcoco_me1 小时前
大模型面试题63:介绍一下RLHF
人工智能·深度学习·机器学习·chatgpt·机器人
core5122 小时前
SGD 算法详解:蒙眼下山的寻宝者
人工智能·算法·矩阵分解·sgd·目标函数
Ka1Yan2 小时前
[链表] - 代码随想录 707. 设计链表
数据结构·算法·链表
scx201310042 小时前
20260112树状数组总结
数据结构·c++·算法·树状数组
FastMoMO2 小时前
Qwen3-VL-2B 在 RK3576 上的部署实践:RKNN + RKLLM 全流程
算法
光算科技2 小时前
AI重写工具导致‘文本湍流’特征|如何人工消除算法识别标记
大数据·人工智能·算法