在Matlab中进行射频电路S、Z、Y、ABCD等参数的转换

在Matlab中进行射频电路S、Z、Y、ABCD等参数的转换

目录

微带线的ABCD矩阵的推导、转换与级联-Matlab计算实例(S、Z、Y参数转换)中,简单介绍了二端口电路 的S、Z、Y、ABCD等参数的转换公式,如下:

但是,这种转换方法非常麻烦,对于多端口的参数转换就更加难以计算了。

一种更加便捷的方法是使用Matlab来转换这些参数,因为Matlab中有现成的转换函数。

1、转换案例-3dB电桥

假设已知理想3dB电桥的Z参数矩阵

使用如下的代码在Matlab中将Z参数转化为其他参数:

matlab 复制代码
clc
clear

Z = [0, 0, -1j, -1j*sqrt(2);
    0, 0, -1j*sqrt(2), -1j;
    -1j, -1j*sqrt(2), 0, 0;
    -1j*sqrt(2), -1j, 0, 0];
Z0 = 1; % 特性阻抗

% 转换为S参数矩阵
S = z2s(Z, Z0);

% 转换为Z参数矩阵
Z=s2z(S,Z0);

% 转换为Y参数矩阵
Y=s2y(S,Z0);

% 转换为ABCD参数矩阵
ABCD=s2abcd(S,Z0);

% 输出结果
disp('The S-parameter matrix is:');
disp(S);

% 输出结果
disp('The Z-parameter matrix is:');
disp(Z);

% 输出结果
disp('The Y-parameter matrix is:');
disp(Y);

% 输出结果
disp('The ABCD-parameter matrix is:');
disp(ABCD);

运行的结果如下

bash 复制代码
The S-parameter matrix is:
   0.0000 + 0.0000i   0.7071 + 0.0000i   0.0000 + 0.0000i   0.0000 - 0.7071i
   0.7071 + 0.0000i   0.0000 + 0.0000i   0.0000 - 0.7071i   0.0000 + 0.0000i
   0.0000 + 0.0000i   0.0000 - 0.7071i   0.0000 + 0.0000i   0.7071 + 0.0000i
   0.0000 - 0.7071i   0.0000 + 0.0000i   0.7071 + 0.0000i   0.0000 + 0.0000i

The Z-parameter matrix is:
   0.0000 + 0.0000i   0.0000 + 0.0000i   0.0000 - 1.0000i   0.0000 - 1.4142i
   0.0000 + 0.0000i  -0.0000 + 0.0000i   0.0000 - 1.4142i   0.0000 - 1.0000i
   0.0000 - 1.0000i   0.0000 - 1.4142i  -0.0000 + 0.0000i   0.0000 + 0.0000i
   0.0000 - 1.4142i   0.0000 - 1.0000i  -0.0000 + 0.0000i  -0.0000 + 0.0000i

The Y-parameter matrix is:
   0.0000 + 0.0000i  -0.0000 + 0.0000i   0.0000 - 1.0000i   0.0000 + 1.4142i
   0.0000 + 0.0000i  -0.0000 + 0.0000i   0.0000 + 1.4142i   0.0000 - 1.0000i
   0.0000 - 1.0000i   0.0000 + 1.4142i  -0.0000 + 0.0000i   0.0000 + 0.0000i
   0.0000 + 1.4142i   0.0000 - 1.0000i   0.0000 + 0.0000i  -0.0000 + 0.0000i

The ABCD-parameter matrix is:
   0.0000 + 0.0000i   0.0000 - 0.0000i   0.0000 + 1.0000i   0.0000 + 1.4142i
   0.0000 - 0.0000i   0.0000 + 0.0000i   0.0000 + 1.4142i   0.0000 + 1.0000i
   0.0000 - 1.0000i   0.0000 + 1.4142i   0.0000 - 0.0000i   0.0000 - 0.0000i
   0.0000 + 1.4142i   0.0000 - 1.0000i   0.0000 - 0.0000i   0.0000 + 0.0000i

>> 

2、将转换结果应用到ADS中制造理想3dB电桥器件

在ADS中,可以使用这些理想的S、Z、Y参数矩阵构造器件,实现理想的电路响应,这在理论验证时是非常有用的。使用时,直接将上面得到的结果填进去就行,但是要注意归一化阻抗的转换:

详细的仿真案例可以参考另一个博客:在ADS中使用传输端口参数构建理想元器件模型---以3dB电桥为例

相关推荐
F1331689295712 小时前
WD5030A,24V降5V,15A 大电流,应用于手机、平板、笔记本充电器
stm32·单片机·嵌入式硬件·51单片机·硬件工程·pcb工艺
fengfuyao98513 小时前
基于MATLAB的匈牙利算法实现任务分配
算法·数学建模·matlab
茜茜西西CeCe14 小时前
数字图像处理-领域平均滤波
图像处理·机器学习·计算机视觉·matlab·领域平均滤波
鲸大鱼的自我修养1 天前
Matlab/Simulink技巧
matlab
MATLAB代码顾问1 天前
MATLAB绘制9种最新的混沌系统
开发语言·matlab
std78791 天前
深入浅出MATLAB数据可视化:超越plot()
matlab·信息可视化·数据分析
jllllyuz1 天前
基于K近邻(KNN)算法的高光谱数据分类MATLAB实现
算法·matlab·分类
【云轩】1 天前
屏幕显示发白问题的硬件工程深度排查:系统兼容性边界分析
硬件工程
wearegogog1232 天前
液压位置控制源代码实现与解析(C语言+MATLAB联合方案)
java·c语言·matlab
MATLAB代码顾问2 天前
MATLAB绘制多种混沌系统
人工智能·算法·matlab