【智能控制】第九,十章 一阶和二阶系统神经网络控制,输出受限系统和输入受限系统的神经网络控制(北京航天航空大学)

目录

一阶系统神经网络控制

[1. 系统描述](#1. 系统描述)

[2. 滑模控制器设计(f(x)已知)](#2. 滑模控制器设计(f(x)已知))

[3. 自适应神经网络控制(f(x)未知)](#3. 自适应神经网络控制(f(x)未知))

[4. 仿真结果](#4. 仿真结果)

二阶系统神经网络控制

[1. 系统描述](#1. 系统描述)

[2. 神经网络控制器​编辑​编辑​编辑​编辑​编辑](#2. 神经网络控制器编辑编辑编辑编辑编辑)

[3. 仿真结果](#3. 仿真结果)

输出受限系统的神经网络控制

[1. 问题描述](#1. 问题描述)

[2. 神经网络控制器](#2. 神经网络控制器)

[​编辑​编辑​编辑​编辑​编辑​编辑​编辑​编辑3. 仿真结果](#编辑编辑编辑编辑编辑编辑编辑编辑3. 仿真结果)

输入受限系统的神经网络控制

[1. 双曲函数](#1. 双曲函数)

[2. 输入受限系统的滑模控制](#2. 输入受限系统的滑模控制)

[3. 输入受限系统的神经网络控制](#3. 输入受限系统的神经网络控制)


一阶系统神经网络控制

1. 系统描述

考虑如下一阶被控对象:

x ̇=bu+f(x)+d(t)

其中u为控制输入,b≠0为已知常数。d(t)为干扰,满足|d(t)|≤D,其中D为已知常数。控制目的是使得x跟踪期望轨迹x_d,其中x_d和x ̇_d有界且已知

Barbalat引理:对于信号g(t),若:1)g(t) 有界;2) 有界;3) 存在且有界( ),则有

2. 滑模控制器设计(f(x)已知)

3. 自适应神经网络控制(f(x)未知)

如果f(x)为未知,可采用RBF网络对f(x)进行逼近。RBF网络算法为

其中ℎ=[ℎ_1,ℎ_2,⋯,ℎ_n]^T为基函数向量,W^∗为权值向量,ε(x)为逼近误差,满足|ε(x)|≤εN,εN为常数。

4. 仿真结果

仿真中,考虑所设计的神经网络控制器,取

二阶系统神经网络控制

1. 系统描述

2. 神经网络控制器

3. 仿真结果

输出受限系统的神经网络控制

1. 问题描述

2. 神经网络控制器

3. 仿真结果

输入受限系统的神经网络控制

1. 双曲函数

2. 输入受限系统的滑模控制

3. 输入受限系统的神经网络控制



资料仅供学习使用

如有错误欢迎留言交流

上理考研周导师的其他专栏:

光电融合集成电路技术 电路原理

C语言 复变函数与积分变换

单片机原理

模式识别原理

数字电子技术

自动控制原理​​​​​​ ​​​​​​ 传感器技术

模拟电子技术

数据结构

概率论与数理统计

高等数学

传感器检测技术

智能控制

嵌入式系统

图像处理与机器视觉

热工与工程流体力学

数字信号处理

线性代数

工程测试技术

大学物理

上理考研周导师了解更多

相关推荐
CoovallyAIHub1 分钟前
方案 | 光伏清洁机器人系统详细技术实施方案
深度学习·算法·计算机视觉
星期天要睡觉3 分钟前
机器学习——CountVectorizer将文本集合转换为 基于词频的特征矩阵
人工智能·机器学习·矩阵
lxmyzzs5 分钟前
【图像算法 - 14】精准识别路面墙体裂缝:基于YOLO12与OpenCV的实例分割智能检测实战(附完整代码)
人工智能·opencv·算法·计算机视觉·裂缝检测·yolo12
什么都想学的阿超14 分钟前
【大语言模型 01】注意力机制数学推导:从零实现Self-Attention
人工智能·语言模型·自然语言处理
大千AI助手2 小时前
SWE-bench:真实世界软件工程任务的“试金石”
人工智能·深度学习·大模型·llm·软件工程·代码生成·swe-bench
天上的光3 小时前
17.迁移学习
人工智能·机器学习·迁移学习
后台开发者Ethan3 小时前
Python需要了解的一些知识
开发语言·人工智能·python
猫头虎3 小时前
猫头虎AI分享|一款Coze、Dify类开源AI应用超级智能体快速构建工具:FastbuildAI
人工智能·开源·prompt·github·aigc·ai编程·ai-native
重启的码农3 小时前
ggml 介绍 (6) 后端 (ggml_backend)
c++·人工智能·神经网络