24/8/15算法笔记 复习_决策树

复制代码
#手动计算决策树到底是如何实现分类的
p1 = (y =='N').mean()
p2 = (y =='Y').mean()

p1 * np.log2(1/p1) +p2*np.log2(1/p2)

X['真实用户'] = y
x = X['日志密度'].unique()#.unique() 是一个方法,它返回一个数组,包含 X['日志密度'] 列中所有不同的值。
x.sort()#排序
print(x)

#目的是通过遍历可能的分割点来计算信息熵,进而评估数据在不同分割点的概率分布。
for i in range(len(x)-1):
    split = x[i:i+2].mean()
    #概率分布
    cond = X['日志密度']<=split
    
    #左边概率是多少,右边是多少
    p = cond.value_counts()/cond.size  #计算满足条件和不满足条件的样本数量,并将其归一化以得到概率分布。
    indexs = p.index
    entropy = 0
    for index in indexs:
        user = X[cond ==index]['真实用户']#取出了目标值y的数据 # 这行代码的目的是过滤X DataFrame,只保留那些满足cond条件等于当前index的行,并从这些行中提取'真实用户'列。
        
        p_user = user.value_counts()/user.size
        #每个分支的信息熵
        entropy += (p_user*np.log2(1/p_user)).sum()*p[index]
    print(split,entropy)
复制代码
x = X['好友密度'].unique()
x.sort()#排序
print(x)
for i in range(len(x)-1):
    split = x[i:i+2].mean()
    #概率分布
    cond = X['好友密度']<=split
    
    #左边概率是多少,右边是多少
    p = cond.value_counts()/cond.size
    
    indexs = p.index#True,False
    
    entropy = 0
    for index in indexs:
        user = X[cond ==index]['真实用户']#取出了目标值y的数据
        
        p_user = user.value_counts()/user.size
        #每个分支的信息熵
        entropy += (p_user*np.log2(1/p_user)).sum()*p[index]
    print(split,entropy)

归一化(Normalization)是数据预处理中的一种常用技术,它将数据的数值范围调整到一个特定的区间,通常是0到1之间,或者-1到1。归一化的目的和好处包括:

  1. 统一尺度:不同特征的数值范围可能差异很大。归一化确保所有特征都在相同的尺度上,有助于算法更公平地对待每个特征。

  2. 提高计算效率:某些算法在数值范围较小的情况下收敛得更快。

  3. 避免数值问题:在数值计算中,非常大的数值可能导致计算精度问题或溢出。归一化可以减少这种风险。

  4. 改善模型性能:对于基于梯度的优化算法(如神经网络),归一化可以加速收敛并提高模型性能。

  5. 特征可比性:归一化后的特征可以更容易地进行比较和解释。

  6. 算法要求:某些算法,如k-最近邻(k-NN)和主成分分析(PCA),对数据的尺度非常敏感,归一化可以提高这些算法的效果。

  7. 概率解释:在处理概率分布或基于概率的算法时,归一化确保了概率的总和为1,这是概率论的一个基本要求。

  8. 公平性:在多目标优化或多任务学习中,归一化可以帮助平衡不同目标或任务的重要性。

  9. 兼容性:不同的数据源可能有不同的量纲和数值范围,归一化有助于将它们统一到一个可比较的标准。

  10. 可视化:在数据可视化中,归一化可以帮助更清晰地展示数据的分布和关系。

归一化用于计算概率分布,这是为了确保在计算信息熵时,每个类别的概率之和为1,从而正确地反映数据的分布情况。

相关推荐
蒙奇D索大22 分钟前
【算法】递归的艺术:从本质思想到递归树,深入剖析算法的性能权衡
经验分享·笔记·算法·改行学it
王哈哈^_^32 分钟前
【数据集+完整源码】水稻病害数据集,yolov8水稻病害检测数据集 6715 张,目标检测水稻识别算法实战训推教程
人工智能·算法·yolo·目标检测·计算机视觉·视觉检测·毕业设计
light_in_hand1 小时前
内存区域划分——垃圾回收
java·jvm·算法
小安同学iter2 小时前
SQL50+Hot100系列(11.7)
java·算法·leetcode·hot100·sql50
_dindong2 小时前
笔试强训:Week-4
数据结构·c++·笔记·学习·算法·哈希算法·散列表
星释2 小时前
Rust 练习册 :Nucleotide Codons与生物信息学
开发语言·算法·rust
BeingACoder2 小时前
【SAA】SpringAI Alibaba学习笔记(二):提示词Prompt
java·人工智能·spring boot·笔记·prompt·saa·springai
Acrelhuang2 小时前
覆盖全场景需求:Acrel-1000 变电站综合自动化系统的技术亮点与应用
大数据·网络·人工智能·笔记·物联网
寂静山林2 小时前
UVa 1366 Martian Mining
算法
DKPT2 小时前
如何设置JVM参数避开直接内存溢出的坑?
java·开发语言·jvm·笔记·学习