深度学习基础—学习率衰减与局部最优问题

1.学习率衰减

下图中,蓝色的线是min-batch梯度下降法过程中较大学习率的的优化路径,绿线是较小学习率的优化路径。

如果使用min-batch梯度下降法,在模型的学习过程中,会有很多噪声,在靠近最小值的时候,由于学习率a不变,因此最终算法在最小值附近摆动。要解决这个问题,就需要减少学习率a,让靠近最小值的过程中,模型的步长小一点,这就需要学习率衰减来解决。

一个训练集被拆成多个min-batch,对一个训练集训练一遍成为1epoch,我们有如下相关的学习率衰减公式:

其中,decay_rate是衰减率,epoch_num是训练的代数,a0是初始学习率,k是小于1的参数。这些做法都可以让学习率随着训练代数的增加,逐渐衰减,从而让模型更加接近最小值。

2.局部最优问题

接下来看看局部最优问题,如下图所示,蓝点是局部最优解,红点是全局最优解。局部最优和全局最优都是梯度为0的点,也就是所有维度都是凹函数。

下图是鞍点,鞍点是部分维度为凸函数,部分维度为凹函数的点,该点的梯度也为0。

实际的神经网络中,尤其是大模型,参数非常多,损失函数的图像在高维空间难以画出,运行过程中,遇到的梯度为0的点很难是局部最优点(这需要所有维度都是凹函数,概率极低)。最容易遇到的是鞍点,遇到鞍点是让人头疼的问题:

因为马鞍面有一部分很平缓,这部分的梯度很小,使用梯度下降法时会经过很长时间才能走到鞍点附近,在鞍点附近扰动,直到找到梯度更大的方向,梯度下降法才能有更深的进展。这个平稳段需要更好的优化算法来加速训练,Adam算法就是很成熟的优化算法,可以帮助我们加速走出平稳段和鞍点,从而搜索到全局最优。

相关推荐
柠檬味拥抱17 分钟前
优化AI智能体行为:Q学习、深度Q网络与动态规划在复杂任务中的研究
人工智能
玄明Hanko18 分钟前
程序员如何使用 cursor 写代码?
人工智能
用户51914958484518 分钟前
HITCON CTF 2018 - 单行PHP挑战:会话上传与流过滤器链的极致利用
人工智能·aigc
..过云雨21 分钟前
01.【数据结构-C语言】数据结构概念&算法效率(时间复杂度和空间复杂度)
c语言·数据结构·笔记·学习
myzzb22 分钟前
基于uiautomation的自动化流程RPA开源开发演示
运维·python·学习·算法·自动化·rpa
柠檬味拥抱23 分钟前
模型无关元学习(MAML)在AI Agent快速适应中的应用研究
人工智能
夜幕龙25 分钟前
宇树 G1 部署(十)——数据格式转换与 IL 训练
人工智能·机器人·具身智能
胡耀超28 分钟前
DataOceanAI Dolphin(ffmpeg音频转化教程) 多语言(中国方言)语音识别系统部署与应用指南
python·深度学习·ffmpeg·音视频·语音识别·多模态·asr
HUIMU_1 小时前
DAY12&DAY13-新世纪DL(Deeplearning/深度学习)战士:破(改善神经网络)1
人工智能·深度学习
致Great1 小时前
DeepResearch开源与闭源方案对比
人工智能·chatgpt