【数学建模备赛】Ep05:斯皮尔曼spearman相关系数

文章目录


一、前言🚀🚀🚀

☀️☀️☀️

外面的世界好大!

去外面......更外面的地方。

没关系的,跟Sakura在外面到处玩,很开心,所以我能坚持下来。

没关系这是我一生里最自由的时间,以前没有过,以后也不会有。

------ 上杉绘梨衣 《龙族》


本文简介:本讲我们将介绍斯皮尔曼spearman相关系数在数学建模中的应用。


二、斯皮尔曼spearman相关系数:☀️☀️☀️

1. 回顾皮尔逊相关系数

1.首先我们要看的是x和y有没有线性的趋势(或者说有没有线性的关系)

2.那怎样来看呢,我们需要做出x和y的散点图

3.通过散点图,我们可以看出大概的趋势。

4.那假如说x和y他们有线性的关系的话,我们就可以算出他们的皮尔逊相关系数

5.那假如说我们现在还想检验一下这个皮尔逊相关系数是否显著的(异于零那如果要用到假设检验的话,

需要用到一个很强的条件,就是我们x和y它的总体是正态分布。

6.那检验正态分布我们学过两种方法:J检验(大样本)、小样本的检验

接下来学另外一种相关系数一一斯皮尔曼spearman相关系数(对我们数据的要求比较低)

2. 斯皮尔曼spearman相关系数

3. 斯皮尔曼相关系数公式

rs大于0说明正相关,小于0说明负相关,而且绝对值越大相关性越强。

4. 另外一种斯皮尔曼相关系数定义

5. matlab的用法

5. matlab的用法

三、对斯皮尔曼相关系数进行假设性检验

3.1 小样本

3.2 大样本

看一下我们之前p值是怎么算的

四、两个相关系数的选择

相关推荐
Cathy Bryant1 天前
矩阵乘以向量?向量乘以向量?
笔记·神经网络·考研·机器学习·数学建模
热心网友俣先生1 天前
2025年下半年八场数学建模竞赛时间轴+优秀论文分享
数学建模
Cathy Bryant2 天前
大模型推理(九):采样温度
笔记·神经网络·机器学习·数学建模·transformer
Cathy Bryant3 天前
大模型损失函数(二):KL散度(Kullback-Leibler divergence)
笔记·神经网络·机器学习·数学建模·transformer
CappuccinoRose3 天前
MATLAB学习文档(二十四)
学习·数学建模·matlab·数据可视化
小老鼠不吃猫4 天前
MathType延时使用
数学建模
88号技师4 天前
2025年8月SCI-汉尼拔·巴卡优化算法Hannibal Barca optimizer-附Matlab免费代码
开发语言·人工智能·算法·数学建模·matlab·优化算法
木头左5 天前
ETF网格交易覆盖率缺口与满仓踏空风险量化模型
数学建模
ECT-OS-JiuHuaShan5 天前
哥德尔不完备定理中的完备是什么?是还原论证的具足幻想。不还原就是完备,哥德尔搞不完定理
人工智能·数学建模·学习方法·几何学·量子计算·拓扑学·空间计算
C灿灿数模5 天前
2025全国仿真建模应用挑战赛选题建议与分析
数学建模