OpenCV/CV2,PIL,Tensor之间如何互相转化

参考资料:

torchvision文档

众所周知OpenCV/CV2和PIL是Python领域最常使用的图像处理库,而Pytorch Tensor则是我们在深度学习领域接触最多的张量数据结构,知道这几种格式之间的相互转化方式是非常有必要的。三类,一共6种相互转化的链路,下面一一道来:

1. OpenCV/CV2(ndarray)

cv2不像PIL Image那样有特定的图像存储类,因此cv2格式其实是一个伪命题。使用cv2读取图片,实际上获得的是一个ndarray。ndarray更是我们的老熟人,它是numpy包中的张量数据类型。

ndarray to tensor:

image_nd = cv2.imread("XX.jpg")
A = ( torch.tensor(image_nd) / 255. ).flip(-1)

上面是一个典型的代码片,需要注意cv2读到的ndarray是uint8类型,并且默认通道顺序是BGR,因此需要先除以255然后反转最后一个维度(Pytorch不支持[::-1]这种切片逆转语法)。

ndarray to pil

image_nd = cv2.imread("/data1/chaishang.cs/Tryon/31_human.jpg")
image_pil = Image.fromarray(image_nd[..., ::-1])

只需使用Image.fromarray方法,需要注意pil图片的通道顺序是RGB,因此也需要先对通道进行反转。

**  2. PIL image**

**  pil to tensor**

import torchvision.transforms.functional as F
F.pil_to_tensor(image_pil) / 255.

pil to ndarray

image_nd = np.array(image_pil)

3. Tensor

**  tensor to ndarray**

直接对tensor调用.numpy()函数即可,如果tensor位于cuda上,需要先运行.cpu()

tensor to pil

import torchvision.transforms.functional as F
F.to_pil_image(tensor)

需要注意tensor需要是[C, H, W]的格式,并且归一化到[0, 1]区间。

相关推荐
dreadp2 小时前
解锁豆瓣高清海报(二) 使用 OpenCV 拼接和压缩
图像处理·python·opencv·计算机视觉·数据分析
梦云澜2 小时前
论文阅读(十二):全基因组关联研究中生物通路的图形建模
论文阅读·人工智能·深度学习
远洋录2 小时前
构建一个数据分析Agent:提升分析效率的实践
人工智能·ai·ai agent
IT古董3 小时前
【深度学习】常见模型-Transformer模型
人工智能·深度学习·transformer
沐雪架构师4 小时前
AI大模型开发原理篇-2:语言模型雏形之词袋模型
人工智能·语言模型·自然语言处理
python算法(魔法师版)5 小时前
深度学习深度解析:从基础到前沿
人工智能·深度学习
kakaZhui5 小时前
【llm对话系统】大模型源码分析之 LLaMA 位置编码 RoPE
人工智能·深度学习·chatgpt·aigc·llama
struggle20256 小时前
一个开源 GenBI AI 本地代理(确保本地数据安全),使数据驱动型团队能够与其数据进行互动,生成文本到 SQL、图表、电子表格、报告和 BI
人工智能·深度学习·目标检测·语言模型·自然语言处理·数据挖掘·集成学习
佛州小李哥6 小时前
通过亚马逊云科技Bedrock打造自定义AI智能体Agent(上)
人工智能·科技·ai·语言模型·云计算·aws·亚马逊云科技
云空8 小时前
《DeepSeek 网页/API 性能异常(DeepSeek Web/API Degraded Performance):网络安全日志》
运维·人工智能·web安全·网络安全·开源·网络攻击模型·安全威胁分析