Opencv-C++笔记 (20) : 距离变换与分水岭的图像分割

文章目录

一、图片分割

图像分割(Image Segmentation)是图像处理最重要的处理手段之一

图像分割的目标是将图像中像素根据一定的规则分为若干(N)个cluster集合,每个集合包含一类像素。

根据算法分为监督学习方法和无监督学习方法,图像分割的算法多数都是无监督学习方法 - KMeans

分水岭算法理解

分水岭(Watershed)是基于地理形态的分析的图像分割算法,模仿地理结构(比如山川、沟壑,盆地)来实现对不同物体的分类。分水岭算法中会用到一个重要的概念------测地线距离

    图像的灰度空间很像地球表面的整个地理结构,每个像素的灰度值代表高度。其中的灰度值较大的像素连成的线可以看做山脊,也就是分水岭。其中的水就是用于二值化的gray threshold level,二值化阈值可以理解为水平面,比水平面低的区域会被淹没,刚开始用水填充每个孤立的山谷(局部最小值)。

    当水平面上升到一定高度时,水就会溢出当前山谷,可以通过在分水岭上修大坝,从而避免两个山谷的水汇集,这样图像就被分成2个像素集,一个是被水淹没的山谷像素集,一个是分水岭线像素集。最终这些大坝形成的线就对整个图像进行了分区,实现对图像的分割。

在该算法中,空间上相邻并且灰度值相近的像素被划分为一个区域。

分水岭算法过程

  1. 把梯度图像中的所有像素按照灰度值进行分类,并设定一个测地距离阈值。
  2. 找到灰度值最小的像素点(默认标记为灰度值最低点),让threshold从最小值开始增长,这些点为起始点。
  3. 水平面在增长的过程中,会碰到周围的邻域像素,测量这些像素到起始点(灰度值最低点)的测地距离,如果小于设定阈值,则将这些像素淹没,否则在这些像素上设置大坝,这样就对这些邻域像素进行了分类。
  4. 随着水平面越来越高,会设置更多更高的大坝,直到灰度值的最大值,所有区域都在分水岭线上相遇,这些大坝就对整个图像像素的进行了分区。

    用上面的算法对图像进行分水岭运算,由于噪声点或其它因素的干扰,可能会得到密密麻麻的小区域,即图像被分得太细(over-segmented,过度分割),这因为图像中有非常多的局部极小值点,每个点都会自成一个小区域。

其中的解决方法:

  1. 对图像进行高斯平滑操作,抹除很多小的最小值,这些小分区就会合并。
  2. 不从最小值开始增长,可以将相对较高的灰度值像素作为起始点(需要用户手动标记),从标记处开始进行淹没,则很多小区域都会被合并为一个区域,这被称为基于图像标记(mark)的分水岭算法。

二、距离变换与分水岭

距离变换常见算法有两种

   不断膨胀/ 腐蚀得到
   基于倒角距离

分水岭变换常见的算法

  基于浸泡理论实现

步骤

将白色背景变成黑色-目的是为后面的变换做准备

使用filter2D与拉普拉斯算子实现图像对比度提高,sharp(锐化)

转为二值图像通过threshold

距离变换

对距离变换结果进行归一化到[0~1]之间 使用阈值,再次二值化,

得到标记 腐蚀得到每个Peak- erode

发现轮廓 -- findContours

绘制轮廓- drawContours

分水岭变换 watershed

对每个分割区域着色输出结果

背景:不感兴趣的区域,越远离目标图像中心的区域就越是背景

前景:感兴趣的区域,越靠近目标图像中心就越是前景

未知区域:即不确定区域,边界所在的区域

改进:

在 O p e n C v OpenCvOpenCv 中算法不从最小值开始增长,可以将相对较高的灰度值像素作为起始点(需要用户手动标记),从标记处开始进行淹没,则很多小区域都会被合并为一个区域,这被称为基于图像标(mark)的分水岭算法。其中标记的每个点就相当于分水岭中的注水点,从这些点开始注水使得水平面上升。手动标记太麻烦,我们可是使用距离转换(cv2.distanceTransform函数)的方法进行标记。cv2.distanceTransform计算的是图像内非零值像素点到最近的零值像素点的距离,即计算二值图像中所有像素点距离其最近的值为 0 的像素点的距离。当然,如果像素点本身的值为 0,则这个距离也为 0。

主要函数

cv::watershed 函数实现了基于距离变换的分水岭算法。该函数的原型如下:

c 复制代码
 void watershed(InputArray image, 
   InputOutputArray markers
   );

image:输入的图像,必须为8位的3通道彩色图像。

markers:输出的标记图像,必须为单通道32位整型图像。

在使用cv::watershed函数进行分水岭算法分割时,需要先进行前期处理,包括图像的预处理和创建标记图像。

c++代码

c 复制代码
#include <opencv2\opencv.hpp>
#include <iostream>

using namespace std;
using namespace cv;

int main()
{
	Mat img, imgGray, imgMask;
	Mat maskWaterShed;  // watershed()函数的参数
	img = imread("HoughLines.jpg");  //原图像
	if (img.empty())
	{
		cout << "请确认图像文件名称是否正确" << endl;
		return -1;
	}
	cvtColor(img, imgGray, COLOR_BGR2GRAY);
	//提取边缘并进行闭运算
	Canny(imgGray, imgMask, 150, 300);
	Mat k = getStructuringElement(0, Size(3, 3));
	morphologyEx(imgMask, imgMask, MORPH_CLOSE, k);
	imshow("边缘图像", imgMask);
	imshow("原图像", img);

	//计算连通域数目
	vector<vector<Point>> contours;
	vector<Vec4i> hierarchy;
	findContours(imgMask, contours, hierarchy, RETR_CCOMP, CHAIN_APPROX_SIMPLE);
	//在maskWaterShed上绘制轮廓,用于输入分水岭算法
	maskWaterShed = Mat::zeros(imgMask.size(), CV_32S);
	for (int index = 0; index < contours.size(); index++)
	{
		drawContours(maskWaterShed, contours, index, Scalar::all(index + 1),
			-1, 8, hierarchy, INT_MAX);
	}
	//分水岭算法   需要对原图像进行处理
	watershed(img, maskWaterShed);

	vector<Vec3b> colors;  // 随机生成几种颜色
	for (int i = 0; i < contours.size(); i++)
	{
		int b = theRNG().uniform(0, 255);
		int g = theRNG().uniform(0, 255);
		int r = theRNG().uniform(0, 255);
		colors.push_back(Vec3b((uchar)b, (uchar)g, (uchar)r));
	}

	Mat resultImg = Mat(img.size(), CV_8UC3);  //显示图像
	for (int i = 0; i < imgMask.rows; i++)
	{
		for (int j = 0; j < imgMask.cols; j++)
		{
			// 绘制每个区域的颜色
			int index = maskWaterShed.at<int>(i, j);
			if (index == -1)  // 区域间的值被置为-1(边界)
			{
				resultImg.at<Vec3b>(i, j) = Vec3b(255, 255, 255);
			}
			else if (index <= 0 || index > contours.size())  // 没有标记清楚的区域被置为0 
			{
				resultImg.at<Vec3b>(i, j) = Vec3b(0, 0, 0);
			}
			else  // 其他每个区域的值保持不变:1,2,...,contours.size()
			{
				resultImg.at<Vec3b>(i, j) = colors[index - 1];  // 把些区域绘制成不同颜色
			}
		}
	}

	resultImg = resultImg * 0.6 + img * 0.4;
	imshow("分水岭结果", resultImg);
	waitKey(0);
	return 0;
}

四、结果展示

1、原始图像

2、分割结果

五、参考链接

[1] 【OpenCv】图像分割------分水岭算法

[2] 【OpenCv】图像分割2------分水岭算法

相关推荐
Mr.L7051730 分钟前
Maui学习笔记- SQLite简单使用案例02添加详情页
笔记·学习·ios·sqlite·c#
IU宝30 分钟前
vector的使用,以及部分功能的模拟实现(C++)
开发语言·c++
星迹日1 小时前
数据结构:二叉树—面试题(二)
java·数据结构·笔记·二叉树·面试题
Hunter_pcx1 小时前
[C++技能提升]插件模式
开发语言·c++
左手の明天2 小时前
【C/C++】C++中使用vector存储并遍历数据
c语言·开发语言·c++
PaLu-LI2 小时前
ORB-SLAM2源码学习:Initializer.cc(13): Initializer::ReconstructF用F矩阵恢复R,t及三维点
c++·人工智能·学习·线性代数·ubuntu·计算机视觉·矩阵
呆呆珝2 小时前
RKNN_C++版本-YOLOV5
c++·人工智能·嵌入式硬件·yolo
ZzYH222 小时前
文献阅读 250125-Accurate predictions on small data with a tabular foundation model
人工智能·笔记·深度学习·机器学习
格林威2 小时前
BroadCom-RDMA博通网卡如何进行驱动安装和设置使得对应网口具有RDMA功能以适配RDMA相机
人工智能·数码相机·opencv·计算机视觉·c#
c++初学者ABC3 小时前
蓝桥杯LQ1044 求完数
c++·算法·lq蓝桥杯