学习大数据DAY40 基于 hive 的数据处理

目录

[Hive 复合数据定义方法](#Hive 复合数据定义方法)

[Hive 复合数据查询方法](#Hive 复合数据查询方法)

[hive 内置函数](#hive 内置函数)

上机练习


Hive 复合数据定义方法

Hive 复合数据查询方法

hive 内置函数

-- 查看系统自带的函数
show functions;
-- 显示自带的函数的用法
desc function upper;
-- 详细显示自带的函数的用法
desc function extended upper;

上机练习

1 导入 user 数据 id name sex age address date lev s_info m_info a_info
2 使用三种复合数据类型 struct map array 存储 info 数据
python 清洗数据:

python 复制代码
with open(r"D:\智云大数据\数据源
\user\user_info.txt",'r',encoding="utf-8") as f:
LineRead=f.readlines()
# print(LineRead)
for i in LineRead:
list1=[]
list_i=i.split('\t')
# print(list_i)
# 把字典的值复制加到每行的末尾
for j in eval(list_i[7]).values():
list1.append(j)
str1='|'.join(list1)
list_i[7]=str1
list_i.append(str1)
# print(list_i)
list_i[8]='|'.join(list_i[8].split(',')).strip('\n') #
把第九列转化成可以导入 struct 的形式
str_i=','.join(list_i) # 每行每个数据用逗号隔开
# print(str_i)
with open(r"D:\智云大数据
\user_info_disposal_new.txt",'a',encoding='utf-8') as h:
h.writelines(str_i+"\n")
h.close()
f.close()

hive 建表和导入数据:

sql 复制代码
drop table if exists user_info;
create table if not exists user_info
(
id int,
name string,
sex string,
age tinyint,
address string,
date_info string,
lev tinyint,
a_info array<string>,
m_info map<string,string>,
s_info
struct<systemtype:string,education:string,marriage_status:string,phon
ebrand:string>
)
row format delimited
fields terminated by ','
collection items terminated by '|'
MAP keys terminated by ':'
lines terminated by '\n'
load data local inpath '/root/user_info_disposal_new.txt'
into table user_info;

结果:(双击 object 能看见值)

3 指标计算
3.1 按月统计各个地区男女生人数

sql 复制代码
select date_format(date_info,'YYYY-MM'),address,sex,count(1) from
user_info
group by date_format(date_info,'YYYY-MM'),address,sex3.2 统计各地区的不同手机型号使用人数,并按照老中青(35 以下青年 男 65 岁
以下女 55 岁以下中年 男 65 岁以上女 55 岁以上老年)年龄 划分
地区 安卓使用人数{老 中 青} ios 使用人数{老 中 青}
with SystemtypeAndAge as
(
select
case when m_info["systemtype"]='android' then 'android'
when m_info["systemtype"]='ios' then 'ios'end as systemtype,
case when age<35 then '青年'
when sex='male' and age<65 or sex='female' and age<55 then '中年'
else '老年'
end as AgeBracket
from user_info
)
select systemtype,AgeBracket,count(1) from SystemtypeAndAge
group by systemtype,AgeBracket


3.2 统计各地区的不同手机型号使用人数,并按照老中青(35 以下青年 男 65 岁
以下女 55 岁以下中年 男 65 岁以上女 55 岁以上老年)年龄 划分
地区 安卓使用人数{老 中 青} ios 使用人数{老 中 青}

sql 复制代码
with SystemtypeAndAge as
(
select
case when m_info["systemtype"]='android' then 'android'
when m_info["systemtype"]='ios' then 'ios'end as systemtype,
case when age<35 then '青年'
when sex='male' and age<65 or sex='female' and age<55 then '中年'
else '老年'
end as AgeBracket
from user_info
)
select systemtype,AgeBracket,count(1) from SystemtypeAndAge
group by systemtype,AgeBracket


3.3 统计不同地区,不同学历,使用的手机品牌(去重)collect_list
地区 学历 手机品牌列表

sql 复制代码
select user_info.address,education
,collect_list(distinct m_info["phonebrand"])
from user_info
left join
(
select address,
case m_info["education"] when "bachelor" then 'bachelor'
when "doctor" then 'doctor'when "master" then 'master'
end as education
from user_info
) EducationInAddress on user_info.address=EducationInAddress.address
group by user_info.address,education


3.4 统计不同等级,各个手机品牌的使用人数(需要行转列)
等级 phonebrand_list
{iphone6:5 iphone7:5 .....mi:5 .....iphoneXS:2}
这题我不会,老师沉迷黑吗喽作业视频讲解都还没发......
第三阶段太吃自学能力了,hive语法基本要去网上找。

相关推荐
YSGZJJ7 分钟前
股指期货技术分析与短线操作方法介绍
大数据·人工智能
Doker 多克13 分钟前
Flink CDC —部署模式
大数据·flink
Guheyunyi17 分钟前
监测预警系统重塑隧道安全新范式
大数据·运维·人工智能·科技·安全
FserSuN28 分钟前
Prompt工程学习之思维树(TOT)
人工智能·学习·prompt
哆啦A梦的口袋呀33 分钟前
基于Python学习《Head First设计模式》第九章 迭代器和组合模式
python·学习·设计模式
虾球xz39 分钟前
CppCon 2015 学习:3D Face Tracking and Reconstruction using Modern C++
开发语言·c++·学习·3d
sponge'1 小时前
opencv学习笔记2:卷积、均值滤波、中值滤波
笔记·python·opencv·学习
Channing Lewis1 小时前
如果科技足够发达,是否还需要维持自然系统(例如生物多样性)中那种‘冗余’和‘多样性’,还是可以只保留最优解?
大数据·人工智能·科技
禺垣1 小时前
区块链技术概述
大数据·人工智能·分布式·物联网·去中心化·区块链
竹言笙熙2 小时前
Polarctf2025夏季赛 web java ez_check
java·学习·web安全