YOLOv8实例分割+双目相机实现物体尺寸测量

1,YOLOv8实例分割原理介绍

YOLOv8是YOLO系列的最新版本,它在目标检测和实例分割方面都进行了显著的改进和创新。以下是YOLOv8实例分割原理的一些关键点:

  1. 先进的骨干和颈部架构:YOLOv8采用了先进的骨干和颈部架构来提高特征提取和物体检测性能 。

  2. 无锚分裂Ultralytics头:YOLOv8使用无锚分裂Ultralytics头,这有助于提高检测过程的准确性和效率,与传统基于锚的方法相比有所改进 。

  3. 优化精度与速度的权衡:YOLOv8专注于保持精度与速度之间的最佳平衡,适用于实时目标检测任务 。

  4. 多种模型支持:YOLOv8系列提供多种模型,每种模型都专门用于计算机视觉中的特定任务,如实例分割 。

  5. 实例分割和跟踪:YOLOv8支持实例分割,包括识别和勾勒图像中的单个物体,提供对空间分布的详细了解。它还支持使用对象轨迹进行实例分割,便于识别和跟踪 。

  6. 正负样本分配策略:YOLOv8采用了TaskAlignedAssigner正负样本分配策略,这是一种动态分配策略,根据分类与回归的分数加权选择正样本 。

  7. 损失函数:YOLOv8的损失计算包括分类和回归分支,使用了BCE Loss和CIoU Loss,以及Distribution Focal Loss 。

  8. 模型训练:YOLOv8的训练策略包括增加训练的epoch数,从300提升到了500,以及在训练后期关闭数据增强操作如Mosaic 。

  9. 多尺度模型:YOLOv8提供了不同尺度的模型,包括N/S/M/L/X,以满足不同场景的需求 。

  10. Anchor-Free方法:YOLOv8从Anchor-Based方法切换到了Anchor-Free方法,这有助于更好地适应各种目标形状和大小 。

YOLOv8的这些特性使其在实例分割任务中表现出色,能够提供精确的物体检测和分割结果。

2,双目测量物体尺寸步骤

  1. 设置双目摄像头

    • 安装两个摄像头,确保它们平行对准待测物体,且焦距相同。
    • 调整摄像头之间的距离(基线距离),这将影响测量的精度和范围。
  2. 校准摄像头

    • 进行摄像头标定,确定摄像头的内参(焦距、主点坐标等)和外参(摄像头的空间位置和旋转)。
    • 使用标定板(如棋盘格)获取多个视角的图像,通过算法计算摄像头参数。
  3. 捕获图像

    • 从两个摄像头获取待测物体的图像,确保物体在两个图像中都有清晰的视图。
  4. 图像预处理

    • 对图像进行去噪、灰度化、边缘检测等预处理操作,以提高特征点的可检测性。
  5. 特征点匹配

    • 在左右图像中找到对应的特征点。这可以通过特征点检测算法(如SIFT、SURF、ORB等)完成。
  6. 视差图计算

3,YOLOv8实例分割+双目相机实现物体尺寸测量效果图

相关推荐
2501_936146041 小时前
【目标检测】钙钛矿晶体YOLO11-GhostDynamicConv模型改进与实现_1
人工智能·目标检测·计算机视觉
jake don8 小时前
AI 深度学习路线
人工智能·深度学习
2501_941837268 小时前
CV医疗应用:基于YOLOv8-RepHGNetV2的疟疾寄生虫细胞形态检测与分类系统
yolo·分类·数据挖掘
bst@微胖子9 小时前
LlamaIndex之核心概念及部署以及入门案例
pytorch·深度学习·机器学习
心态与习惯11 小时前
深度学习中的 seq2seq 模型
人工智能·深度学习·seq2seq
2501_9413297211 小时前
YOLOv8-LADH马匹检测识别算法详解与实现
算法·yolo·目标跟踪
LOnghas121111 小时前
YOLOv10n改进LDConv血氧仪关键生理参数检测与识别_项目实战_经验分享原创
yolo
啊阿狸不会拉杆12 小时前
《数字图像处理》第 7 章 - 小波与多分辨率处理
图像处理·人工智能·算法·计算机视觉·数字图像处理
AI即插即用12 小时前
即插即用系列 | CVPR 2025 AmbiSSL:首个注释模糊感知的半监督医学图像分割框架
图像处理·人工智能·深度学习·计算机视觉·视觉检测
Dev7z12 小时前
公共区域传单分发检测数据集(YOLO格式)
yolo·发传单