YOLOv8实例分割+双目相机实现物体尺寸测量

1,YOLOv8实例分割原理介绍

YOLOv8是YOLO系列的最新版本,它在目标检测和实例分割方面都进行了显著的改进和创新。以下是YOLOv8实例分割原理的一些关键点:

  1. 先进的骨干和颈部架构:YOLOv8采用了先进的骨干和颈部架构来提高特征提取和物体检测性能 。

  2. 无锚分裂Ultralytics头:YOLOv8使用无锚分裂Ultralytics头,这有助于提高检测过程的准确性和效率,与传统基于锚的方法相比有所改进 。

  3. 优化精度与速度的权衡:YOLOv8专注于保持精度与速度之间的最佳平衡,适用于实时目标检测任务 。

  4. 多种模型支持:YOLOv8系列提供多种模型,每种模型都专门用于计算机视觉中的特定任务,如实例分割 。

  5. 实例分割和跟踪:YOLOv8支持实例分割,包括识别和勾勒图像中的单个物体,提供对空间分布的详细了解。它还支持使用对象轨迹进行实例分割,便于识别和跟踪 。

  6. 正负样本分配策略:YOLOv8采用了TaskAlignedAssigner正负样本分配策略,这是一种动态分配策略,根据分类与回归的分数加权选择正样本 。

  7. 损失函数:YOLOv8的损失计算包括分类和回归分支,使用了BCE Loss和CIoU Loss,以及Distribution Focal Loss 。

  8. 模型训练:YOLOv8的训练策略包括增加训练的epoch数,从300提升到了500,以及在训练后期关闭数据增强操作如Mosaic 。

  9. 多尺度模型:YOLOv8提供了不同尺度的模型,包括N/S/M/L/X,以满足不同场景的需求 。

  10. Anchor-Free方法:YOLOv8从Anchor-Based方法切换到了Anchor-Free方法,这有助于更好地适应各种目标形状和大小 。

YOLOv8的这些特性使其在实例分割任务中表现出色,能够提供精确的物体检测和分割结果。

2,双目测量物体尺寸步骤

  1. 设置双目摄像头

    • 安装两个摄像头,确保它们平行对准待测物体,且焦距相同。
    • 调整摄像头之间的距离(基线距离),这将影响测量的精度和范围。
  2. 校准摄像头

    • 进行摄像头标定,确定摄像头的内参(焦距、主点坐标等)和外参(摄像头的空间位置和旋转)。
    • 使用标定板(如棋盘格)获取多个视角的图像,通过算法计算摄像头参数。
  3. 捕获图像

    • 从两个摄像头获取待测物体的图像,确保物体在两个图像中都有清晰的视图。
  4. 图像预处理

    • 对图像进行去噪、灰度化、边缘检测等预处理操作,以提高特征点的可检测性。
  5. 特征点匹配

    • 在左右图像中找到对应的特征点。这可以通过特征点检测算法(如SIFT、SURF、ORB等)完成。
  6. 视差图计算

3,YOLOv8实例分割+双目相机实现物体尺寸测量效果图

相关推荐
牧歌悠悠2 小时前
【深度学习】Unet的基础介绍
人工智能·深度学习·u-net
Archie_IT3 小时前
DeepSeek R1/V3满血版——在线体验与API调用
人工智能·深度学习·ai·自然语言处理
大数据追光猿3 小时前
Python应用算法之贪心算法理解和实践
大数据·开发语言·人工智能·python·深度学习·算法·贪心算法
Watermelo6176 小时前
从DeepSeek大爆发看AI革命困局:大模型如何突破算力囚笼与信任危机?
人工智能·深度学习·神经网络·机器学习·ai·语言模型·自然语言处理
Donvink6 小时前
【DeepSeek-R1背后的技术】系列九:MLA(Multi-Head Latent Attention,多头潜在注意力)
人工智能·深度学习·语言模型·transformer
计算机软件程序设计6 小时前
深度学习在图像识别中的应用-以花卉分类系统为例
人工智能·深度学习·分类
向哆哆8 小时前
卷积与动态特征选择:重塑YOLOv8的多尺度目标检测能力
yolo·目标检测·目标跟踪·yolov8
lihuayong9 小时前
计算机视觉:主流数据集整理
人工智能·计算机视觉·mnist数据集·coco数据集·图像数据集·cifar-10数据集·imagenet数据集
終不似少年遊*9 小时前
词向量与词嵌入
人工智能·深度学习·nlp·机器翻译·词嵌入
DCcsdnDC9 小时前
Airsim仿真双目相机时间戳不同步的解决办法
计算机视觉