YOLOv8实例分割+双目相机实现物体尺寸测量

1,YOLOv8实例分割原理介绍

YOLOv8是YOLO系列的最新版本,它在目标检测和实例分割方面都进行了显著的改进和创新。以下是YOLOv8实例分割原理的一些关键点:

  1. 先进的骨干和颈部架构:YOLOv8采用了先进的骨干和颈部架构来提高特征提取和物体检测性能 。

  2. 无锚分裂Ultralytics头:YOLOv8使用无锚分裂Ultralytics头,这有助于提高检测过程的准确性和效率,与传统基于锚的方法相比有所改进 。

  3. 优化精度与速度的权衡:YOLOv8专注于保持精度与速度之间的最佳平衡,适用于实时目标检测任务 。

  4. 多种模型支持:YOLOv8系列提供多种模型,每种模型都专门用于计算机视觉中的特定任务,如实例分割 。

  5. 实例分割和跟踪:YOLOv8支持实例分割,包括识别和勾勒图像中的单个物体,提供对空间分布的详细了解。它还支持使用对象轨迹进行实例分割,便于识别和跟踪 。

  6. 正负样本分配策略:YOLOv8采用了TaskAlignedAssigner正负样本分配策略,这是一种动态分配策略,根据分类与回归的分数加权选择正样本 。

  7. 损失函数:YOLOv8的损失计算包括分类和回归分支,使用了BCE Loss和CIoU Loss,以及Distribution Focal Loss 。

  8. 模型训练:YOLOv8的训练策略包括增加训练的epoch数,从300提升到了500,以及在训练后期关闭数据增强操作如Mosaic 。

  9. 多尺度模型:YOLOv8提供了不同尺度的模型,包括N/S/M/L/X,以满足不同场景的需求 。

  10. Anchor-Free方法:YOLOv8从Anchor-Based方法切换到了Anchor-Free方法,这有助于更好地适应各种目标形状和大小 。

YOLOv8的这些特性使其在实例分割任务中表现出色,能够提供精确的物体检测和分割结果。

2,双目测量物体尺寸步骤

  1. 设置双目摄像头

    • 安装两个摄像头,确保它们平行对准待测物体,且焦距相同。
    • 调整摄像头之间的距离(基线距离),这将影响测量的精度和范围。
  2. 校准摄像头

    • 进行摄像头标定,确定摄像头的内参(焦距、主点坐标等)和外参(摄像头的空间位置和旋转)。
    • 使用标定板(如棋盘格)获取多个视角的图像,通过算法计算摄像头参数。
  3. 捕获图像

    • 从两个摄像头获取待测物体的图像,确保物体在两个图像中都有清晰的视图。
  4. 图像预处理

    • 对图像进行去噪、灰度化、边缘检测等预处理操作,以提高特征点的可检测性。
  5. 特征点匹配

    • 在左右图像中找到对应的特征点。这可以通过特征点检测算法(如SIFT、SURF、ORB等)完成。
  6. 视差图计算

3,YOLOv8实例分割+双目相机实现物体尺寸测量效果图

相关推荐
renhongxia112 小时前
AI算法实战:逻辑回归在风控场景中的应用
人工智能·深度学习·算法·机器学习·信息可视化·语言模型·逻辑回归
cskywit13 小时前
破解红外“魅影”难题:WMRNet 如何以频率分析与二阶差分重塑小目标检测?
人工智能·深度学习
旅途中的宽~14 小时前
【深度学习】通过nohup后台运行训练命令后,如何通过日志文件反向查找并终止进程?
linux·深度学习
zy_destiny15 小时前
【工业场景】用YOLOv26实现桥梁检测
人工智能·深度学习·yolo·机器学习·计算机视觉·目标跟踪
2501_9418372615 小时前
基于YOLO11-Aux改进的圣女果目标检测实现
人工智能·目标检测·计算机视觉
power 雀儿15 小时前
Transformer输入嵌入与绝对位置编码
人工智能·深度学习·transformer
Mark White15 小时前
YOLOv3-tiny 网络结构浅析
yolo
薛不痒15 小时前
深度学习的补充:神经网络处理回归问题(人脸关键点识别)&自然语言处理的介绍
深度学习·神经网络·回归
攒了一袋星辰16 小时前
Transformer词向量与自注意力机制
人工智能·深度学习·transformer
Together_CZ16 小时前
ultralytics.nn.autobackend——autobackend.py子模块代码详读
yolo·目标检测·torch·ultralytics·autobackend·推理后端·多种模型支持