YOLOv8实例分割+双目相机实现物体尺寸测量

1,YOLOv8实例分割原理介绍

YOLOv8是YOLO系列的最新版本,它在目标检测和实例分割方面都进行了显著的改进和创新。以下是YOLOv8实例分割原理的一些关键点:

  1. 先进的骨干和颈部架构:YOLOv8采用了先进的骨干和颈部架构来提高特征提取和物体检测性能 。

  2. 无锚分裂Ultralytics头:YOLOv8使用无锚分裂Ultralytics头,这有助于提高检测过程的准确性和效率,与传统基于锚的方法相比有所改进 。

  3. 优化精度与速度的权衡:YOLOv8专注于保持精度与速度之间的最佳平衡,适用于实时目标检测任务 。

  4. 多种模型支持:YOLOv8系列提供多种模型,每种模型都专门用于计算机视觉中的特定任务,如实例分割 。

  5. 实例分割和跟踪:YOLOv8支持实例分割,包括识别和勾勒图像中的单个物体,提供对空间分布的详细了解。它还支持使用对象轨迹进行实例分割,便于识别和跟踪 。

  6. 正负样本分配策略:YOLOv8采用了TaskAlignedAssigner正负样本分配策略,这是一种动态分配策略,根据分类与回归的分数加权选择正样本 。

  7. 损失函数:YOLOv8的损失计算包括分类和回归分支,使用了BCE Loss和CIoU Loss,以及Distribution Focal Loss 。

  8. 模型训练:YOLOv8的训练策略包括增加训练的epoch数,从300提升到了500,以及在训练后期关闭数据增强操作如Mosaic 。

  9. 多尺度模型:YOLOv8提供了不同尺度的模型,包括N/S/M/L/X,以满足不同场景的需求 。

  10. Anchor-Free方法:YOLOv8从Anchor-Based方法切换到了Anchor-Free方法,这有助于更好地适应各种目标形状和大小 。

YOLOv8的这些特性使其在实例分割任务中表现出色,能够提供精确的物体检测和分割结果。

2,双目测量物体尺寸步骤

  1. 设置双目摄像头

    • 安装两个摄像头,确保它们平行对准待测物体,且焦距相同。
    • 调整摄像头之间的距离(基线距离),这将影响测量的精度和范围。
  2. 校准摄像头

    • 进行摄像头标定,确定摄像头的内参(焦距、主点坐标等)和外参(摄像头的空间位置和旋转)。
    • 使用标定板(如棋盘格)获取多个视角的图像,通过算法计算摄像头参数。
  3. 捕获图像

    • 从两个摄像头获取待测物体的图像,确保物体在两个图像中都有清晰的视图。
  4. 图像预处理

    • 对图像进行去噪、灰度化、边缘检测等预处理操作,以提高特征点的可检测性。
  5. 特征点匹配

    • 在左右图像中找到对应的特征点。这可以通过特征点检测算法(如SIFT、SURF、ORB等)完成。
  6. 视差图计算

3,YOLOv8实例分割+双目相机实现物体尺寸测量效果图

相关推荐
华清远见IT开放实验室几秒前
【每天学点AI】实战图像增强技术在人工智能图像处理中的应用
图像处理·人工智能·python·opencv·计算机视觉
只怕自己不够好14 分钟前
《OpenCV 图像缩放、翻转与变换全攻略:从基础操作到高级应用实战》
人工智能·opencv·计算机视觉
YRr YRr31 分钟前
如何使用 PyTorch 实现图像分类数据集的加载和处理
pytorch·深度学习·分类
HPC_fac130520678164 小时前
以科学计算为切入点:剖析英伟达服务器过热难题
服务器·人工智能·深度学习·机器学习·计算机视觉·数据挖掘·gpu算力
小陈phd6 小时前
OpenCV从入门到精通实战(九)——基于dlib的疲劳监测 ear计算
人工智能·opencv·计算机视觉
如若12311 小时前
主要用于图像的颜色提取、替换以及区域修改
人工智能·opencv·计算机视觉
老艾的AI世界12 小时前
AI翻唱神器,一键用你喜欢的歌手翻唱他人的曲目(附下载链接)
人工智能·深度学习·神经网络·机器学习·ai·ai翻唱·ai唱歌·ai歌曲
加密新世界13 小时前
优化 Solana 程序
人工智能·算法·计算机视觉
sp_fyf_202415 小时前
【大语言模型】ACL2024论文-19 SportsMetrics: 融合文本和数值数据以理解大型语言模型中的信息融合
人工智能·深度学习·神经网络·机器学习·语言模型·自然语言处理
CoderIsArt15 小时前
基于 BP 神经网络整定的 PID 控制
人工智能·深度学习·神经网络