【PyTorch】深度学习PyTorch加载数据

系列文章目录

【PyTorch】深度学习PyTorch环境配置及安装【详细清晰】


文章目录


前言

pytorch的数据加载中关于如何操作数据主要涉及DatasetDataLoader两个类,Dataset主要告诉Dataloader如何获取数据,DataLoader主要用于加载数据和为网络提供数据。打个比方,假如我们面前有一堆垃圾,要对其进行回收。这时候我们要告诉垃圾回收器两个重要信息,如何获取可回收的垃圾(如何获取数据Dataset)和可回收的垃圾数量有多少(知道什么时候算一轮)。


一、Dataset与Dataloader

Dataset

假设我现在这里有一堆垃圾(相当于一堆数据),分别有红黄蓝三种颜色,我需要将这些垃圾分类出来,就能用到Dataset,Dataset能够分别将不同种颜色的垃圾归成各自的一类(获取数据),蓝色为蓝色的一类,红色为红色归为一类,并将它们标注编号,例如0、1、2、3、4...等等,同时还能获取到相应的label(图中的黑色)。

Dataloader

对获取到的数据进行打包,比如说要将数据送进网络的时候,不会是一个一个送进去,而是进行打包成几个几个送入,例如将编号0、1、2、3打包进入网络输送。

二、使用步骤

Dataset类的使用

我们需要导入这个类,使用from torch.utils.data import Dataset。utils意为工具的意思,主要是从torch这个大工具箱中挑选实用(经常用)的工具区,从这个工具区中挑选跟数据(data)有关的工具。Dataset是干嘛的呢?我们可以采用help(Dataset)或者在jupyter中使用Dataset??,就会出现一段英文用来描述Dataset的相关信息,大概意思就是所有的子类应该继承Dataset这个抽象类,同时应该重写__getitem____len__方法。
__getitem__:提供方式去获取数据;__len__:提供这个数据集的数量有多少


通过下面数据来写代码

点击下载数据集:https://download.csdn.net/download/Q20011102/89607569,这是一个分类蚂蚁和蜜蜂的数据集

下载完毕,看数据的组织结构,首先分为训练数据集和测试数据集,然后每个数据集下面有ants/bees两类。ants/bees文件夹中有对应的图片。这时候,我们需要确定,如何去获取数据集的输入数据和真实label,对于这个数据集,输入数据就是每一个图片,真实的label就是图片对应的动物名称。

2.读入数据

python 复制代码
from torch.utils.data import Dataset
from PIL import Image
import os


class Mydata(Dataset):

    def __init__(self, root_dir, label_dir):
        self.root_dir = root_dir #只有用self变量才会变成全局变量
        self.label_dir = label_dir 
        self.path = os.path.join(self.root_dir, self.label_dir)
        self.img_path = os.listdir(self.path)

    def __getitem__(self, idx):
        # 通过索引去获取图片地址
        img_name = self.img_path[idx]
        img_item_path = os.path.join(self.root_dir, self.label_dir, img_name)#拼接图片地址
        img = Image.open(img_item_path)#读取图片
        label = self.label_dir
        return img, label

    def __len__(self):
        return len(self.img_path)


root_dir = "dataset/train"
ants_label_dir = "ants"
bees_label_dir = "bees"
ants_dataset = Mydata(root_dir, ants_label_dir)
bees_dataset = Mydata(root_dir, bees_label_dir)


train_dataset=ants_dataset+bees_dataset
相关推荐
qzhqbb32 分钟前
基于统计方法的语言模型
人工智能·语言模型·easyui
冷眼看人间恩怨1 小时前
【话题讨论】AI大模型重塑软件开发:定义、应用、优势与挑战
人工智能·ai编程·软件开发
2401_883041081 小时前
新锐品牌电商代运营公司都有哪些?
大数据·人工智能
AI极客菌2 小时前
Controlnet作者新作IC-light V2:基于FLUX训练,支持处理风格化图像,细节远高于SD1.5。
人工智能·计算机视觉·ai作画·stable diffusion·aigc·flux·人工智能作画
阿_旭2 小时前
一文读懂| 自注意力与交叉注意力机制在计算机视觉中作用与基本原理
人工智能·深度学习·计算机视觉·cross-attention·self-attention
王哈哈^_^2 小时前
【数据集】【YOLO】【目标检测】交通事故识别数据集 8939 张,YOLO道路事故目标检测实战训练教程!
前端·人工智能·深度学习·yolo·目标检测·计算机视觉·pyqt
Power20246663 小时前
NLP论文速读|LongReward:基于AI反馈来提升长上下文大语言模型
人工智能·深度学习·机器学习·自然语言处理·nlp
数据猎手小k3 小时前
AIDOVECL数据集:包含超过15000张AI生成的车辆图像数据集,目的解决旨在解决眼水平分类和定位问题。
人工智能·分类·数据挖掘
好奇龙猫3 小时前
【学习AI-相关路程-mnist手写数字分类-win-硬件:windows-自我学习AI-实验步骤-全连接神经网络(BPnetwork)-操作流程(3) 】
人工智能·算法
沉下心来学鲁班3 小时前
复现LLM:带你从零认识语言模型
人工智能·语言模型