【提示学习论文】AAPL: Adding Attributes to Prompt Learning for Vision-Language Models

AAPL: Adding Attributes to Prompt Learning for Vision-Language Models(2024CVPR)

  • 问题:在unseen class上,性能提升有限
  • 解决:在提示学习中引入对抗性标记嵌入adversarial token embedding, 将低层次视觉增强特征与高层次类别信息解耦,解决传统零样本学习技术中的数据增强问题。
  • AdTriplet损失函数

对比CoCoOp和APPL


  • 1、2:类别
  • A、B:不同的随机增强
  • pull:对图像进行不同的随机增强后,即时希望图像有所不同,但它们仍然是同一个类别。因此增量元标记通过将相同类别的增量原标记拉近,来学习相似的属性特征。
  • push:对于不同类别的图像,它们的增量元标记应该学习到不同的属性特征。因此需要embedding中将它们推开来学习。

动机

meta token不能有效的捕捉语义信息

提出 delta meta token

  • 需要两个类别
  • 两种随机增强(从SimCLR提出的14种无重复增强方法种随机选择两种)

对抗性三重损失

constraints-2

  • Δpai 1A
  • 正对 Δpai 2A:不同类别,相同增强
  • 反对 Δpai 1B:相同类别,不同增强

constraints-4

总损失

实验

base to new 76.01

总结

  • 在CoCoOp上的改进,在原本的meta-net中,增加了Adtriplet loss。通过在两个类别,两种随机增强之间计算,更新meta-net。
  • 然后将meta token加入到Learnable prompt里面,和CoCoOp一样

疑问

为什么这样做能达到解耦的效果?

  • 增量元标记Δmeat tokens:从同一类别不同增强的图像中相减得到,主要捕捉图像增强的变化(低层次特征差异,与类别的高层语义信息无关)
  • 使得增量元标记可以专注于增强引入的低层次特征,而非类别本身的特征

对抗三重损失的作用?

  • 拉近同一类别的不同增强版本
  • 推开不同类别的增量元标记,进一步区分类别之间的特征
  • 帮助低层次的视觉特征(亮度、颜色)与高层次的语义特征(类别)之间,建立清晰的界限
  • 使得模型学会增强特征与类别特征的区分能力,有效将两者解耦

可学习提示?

  • 最后将增量元标记中的属性特定偏差引入到learnable prompt中,此时增量元标记包含低层次增强特征,让提示学习可以专注于高层次类别信息。
相关推荐
Angindem1 小时前
SpringClound 微服务分布式Nacos学习笔记
分布式·学习·微服务
虾球xz1 小时前
游戏引擎学习第244天: 完成异步纹理下载
c++·学习·游戏引擎
BOB-wangbaohai1 小时前
Flowable7.x学习笔记(十四)查看部署流程Bpmn2.0-xml
xml·笔记·学习
何双新2 小时前
L3-3、从单轮到链式任务:设计协作型 Prompt 系统
服务器·搜索引擎·prompt
先生沉默先2 小时前
c#接口_抽象类_多态学习
开发语言·学习·c#
豆芽8192 小时前
图解YOLO(You Only Look Once)目标检测(v1-v5)
人工智能·深度学习·学习·yolo·目标检测·计算机视觉
友善啊,朋友2 小时前
《普通逻辑》学习记录——性质命题及其推理
学习·逻辑学
Gsen28193 小时前
AI大模型从0到1记录学习 数据结构和算法 day20
数据结构·学习·算法·生成对抗网络·目标跟踪·语言模型·知识图谱
cmoaciopm4 小时前
Obsidian和Ollama大语言模型的交互过程
人工智能·语言模型
能来帮帮蒟蒻吗4 小时前
Docker安装(Ubuntu22版)
笔记·学习·spring cloud·docker·容器