Elasticsearch(面试篇)

目录

Elasticsearch的倒排索引是什么?

详细描述一下Elasticsearch更新和删除文档的过程

描述一下Elasticsearch搜索的过程


兄弟们一起加油 ! ! !

Elasticsearch的倒排索引是什么?

传统我们索引通过文章,逐个遍历找到对应关键词的位置。而倒排索引,是通过分成策略,形成了词和文章的映射关系表,这种词典+映射表即为倒排索引。有了倒排索引,就能实现O(1) 时间复杂度的效率检索文章了,极大的提高了检索效率。

详细描述一下Elasticsearch更新和删除文档的过程

  1. 删除和更新也都是写操作,但是Elasticsearch中的文档是不可变的,因此不能被删除或则改动以展示其变更;

  2. 磁盘上的每个段都有一个相应的 .del文件。当删除请求发送后,文档没有真的被删除而是在 .del文件中被标记为删除,新版本的文档被索引到一个新段。旧版本的文档依然能匹配查询,但是会在结果中被过滤掉。

描述一下Elasticsearch搜索的过程

  1. 搜索被执行成一个两阶段过程,我们称之为Query Then Fetch;

  2. 在初始查询阶段时,查询会广播到索引中每一个分片拷贝(主分或者副本分片)。每个分片在本地执行搜索并构建一个文档匹配的大小为from + size的优先队列

  3. 每个分片返回各自优先队列中所有文档的ID和排序值给协调节点,它合并这些值到自己的优先队列中来产生一个全局排序后的结果列表。

  4. 接下来就是 取回阶段,协调节点辨别出哪些文档需要被取回并向相关的分片体骄傲多个GET请求。每个分片加载并丰富文档,如果有需要的话,接着返回文档给协调节点。一旦所有的文档都被取回了,协调节点返回结果给客户端。

  5. 补充:Query Then Fetch 的搜索类型在文档相关性打分的时候参考的时本分片的数据,这样在文档数量较少的时候可能不够准确,DFS Query Then Fetch增加了一个预查询的处理,询问Term和Document frequency,这个评分更准确,但是性能会变差。

后续会继续增加该文章面试问题

相关推荐
茶杯675几秒前
极睿iClip易视频——电商短视频智能运营的革新者
大数据·人工智能
007php0077 分钟前
redis缓存功能结合实际项目面试之问题与解析
网络·redis·nginx·缓存·面试·职场和发展·php
老蒋新思维9 分钟前
创客匠人峰会复盘:AI 赋能 IP 创新增长,知识变现的 4 大实战路径与跨行业案例
大数据·网络·人工智能·tcp/ip·创始人ip·创客匠人·知识变现
ManageEngineITSM10 分钟前
IT 资产扫描工具与企业服务台的数字化底层价值
大数据·运维·人工智能·itsm·工单系统
阿蔹13 分钟前
Selenium---控制窗口、manage()方法
java·selenium·测试工具·面试
Appreciate(欣赏)27 分钟前
Spark解析JSON字符串
大数据·spark·json
毕设源码-赖学姐30 分钟前
【开题答辩全过程】以 基于Spark的全球地震信息数据可视化分析平台研究为例,包含答辩的问题和答案
大数据·信息可视化·spark
PS12323240 分钟前
城市安全建设中的风环境监测解决方案
大数据·人工智能
学习中的阿陈1 小时前
flume安装
大数据·flume
路边草随风1 小时前
java 实现 flink cdc 读 mysql binlog 按表写入kafka不同topic
java·大数据·mysql·flink