Elasticsearch(面试篇)

目录

Elasticsearch的倒排索引是什么?

详细描述一下Elasticsearch更新和删除文档的过程

描述一下Elasticsearch搜索的过程


兄弟们一起加油 ! ! !

Elasticsearch的倒排索引是什么?

传统我们索引通过文章,逐个遍历找到对应关键词的位置。而倒排索引,是通过分成策略,形成了词和文章的映射关系表,这种词典+映射表即为倒排索引。有了倒排索引,就能实现O(1) 时间复杂度的效率检索文章了,极大的提高了检索效率。

详细描述一下Elasticsearch更新和删除文档的过程

  1. 删除和更新也都是写操作,但是Elasticsearch中的文档是不可变的,因此不能被删除或则改动以展示其变更;

  2. 磁盘上的每个段都有一个相应的 .del文件。当删除请求发送后,文档没有真的被删除而是在 .del文件中被标记为删除,新版本的文档被索引到一个新段。旧版本的文档依然能匹配查询,但是会在结果中被过滤掉。

描述一下Elasticsearch搜索的过程

  1. 搜索被执行成一个两阶段过程,我们称之为Query Then Fetch;

  2. 在初始查询阶段时,查询会广播到索引中每一个分片拷贝(主分或者副本分片)。每个分片在本地执行搜索并构建一个文档匹配的大小为from + size的优先队列

  3. 每个分片返回各自优先队列中所有文档的ID和排序值给协调节点,它合并这些值到自己的优先队列中来产生一个全局排序后的结果列表。

  4. 接下来就是 取回阶段,协调节点辨别出哪些文档需要被取回并向相关的分片体骄傲多个GET请求。每个分片加载并丰富文档,如果有需要的话,接着返回文档给协调节点。一旦所有的文档都被取回了,协调节点返回结果给客户端。

  5. 补充:Query Then Fetch 的搜索类型在文档相关性打分的时候参考的时本分片的数据,这样在文档数量较少的时候可能不够准确,DFS Query Then Fetch增加了一个预查询的处理,询问Term和Document frequency,这个评分更准确,但是性能会变差。

后续会继续增加该文章面试问题

相关推荐
智能相对论2 小时前
CES深度观察丨智能清洁的四大关键词:变形、出户、体验以及生态协同
大数据·人工智能
焦耳热科技前沿4 小时前
北京科技大学/理化所ACS Nano:混合价态Cu₂Sb金属间化合物实现高效尿素电合成
大数据·人工智能·自动化·能源·材料工程
辞砚技术录4 小时前
MySQL面试题——联合索引
数据库·面试
小L~~~4 小时前
绿盟校招C++研发工程师一面复盘
c++·面试
min1811234564 小时前
深度伪造内容的检测与溯源技术
大数据·网络·人工智能
武子康5 小时前
大数据-209 深度理解逻辑回归(Logistic Regression)与梯度下降优化算法
大数据·后端·机器学习
数据智研5 小时前
【数据分享】(2005–2016年)基于水资源承载力的华北地区降水与地下水要素数据
大数据·人工智能·信息可视化·数据分析
UrbanJazzerati5 小时前
解码数据分布:茎叶图和箱形图初学者指南
面试·数据分析
TDengine (老段)7 小时前
TDengine Python 连接器入门指南
大数据·数据库·python·物联网·时序数据库·tdengine·涛思数据
亚古数据7 小时前
亚古数据:查询斯里兰卡公司可以获取什么文件和信息?
大数据·亚古数据·斯里兰卡公司查询