Elasticsearch(面试篇)

目录

Elasticsearch的倒排索引是什么?

详细描述一下Elasticsearch更新和删除文档的过程

描述一下Elasticsearch搜索的过程


兄弟们一起加油 ! ! !

Elasticsearch的倒排索引是什么?

传统我们索引通过文章,逐个遍历找到对应关键词的位置。而倒排索引,是通过分成策略,形成了词和文章的映射关系表,这种词典+映射表即为倒排索引。有了倒排索引,就能实现O(1) 时间复杂度的效率检索文章了,极大的提高了检索效率。

详细描述一下Elasticsearch更新和删除文档的过程

  1. 删除和更新也都是写操作,但是Elasticsearch中的文档是不可变的,因此不能被删除或则改动以展示其变更;

  2. 磁盘上的每个段都有一个相应的 .del文件。当删除请求发送后,文档没有真的被删除而是在 .del文件中被标记为删除,新版本的文档被索引到一个新段。旧版本的文档依然能匹配查询,但是会在结果中被过滤掉。

描述一下Elasticsearch搜索的过程

  1. 搜索被执行成一个两阶段过程,我们称之为Query Then Fetch;

  2. 在初始查询阶段时,查询会广播到索引中每一个分片拷贝(主分或者副本分片)。每个分片在本地执行搜索并构建一个文档匹配的大小为from + size的优先队列

  3. 每个分片返回各自优先队列中所有文档的ID和排序值给协调节点,它合并这些值到自己的优先队列中来产生一个全局排序后的结果列表。

  4. 接下来就是 取回阶段,协调节点辨别出哪些文档需要被取回并向相关的分片体骄傲多个GET请求。每个分片加载并丰富文档,如果有需要的话,接着返回文档给协调节点。一旦所有的文档都被取回了,协调节点返回结果给客户端。

  5. 补充:Query Then Fetch 的搜索类型在文档相关性打分的时候参考的时本分片的数据,这样在文档数量较少的时候可能不够准确,DFS Query Then Fetch增加了一个预查询的处理,询问Term和Document frequency,这个评分更准确,但是性能会变差。

后续会继续增加该文章面试问题

相关推荐
一只叫煤球的猫7 小时前
写代码很6,面试秒变菜鸟?不卖课,面试官视角走心探讨
前端·后端·面试
武子康13 小时前
大数据-98 Spark 从 DStream 到 Structured Streaming:Spark 实时计算的演进
大数据·后端·spark
阿里云大数据AI技术13 小时前
2025云栖大会·大数据AI参会攻略请查收!
大数据·人工智能
Hilaku15 小时前
Token已过期,我是如何实现无感刷新Token的?
前端·javascript·面试
Mor_15 小时前
UE5核心宏标记 (UCLASS, UPROPERTY, UFUNCTION) 学习笔记
面试
沐怡旸15 小时前
【底层机制】std::shared_ptr解决的痛点?是什么?如何实现?如何正确用?
c++·面试
Java中文社群15 小时前
有点意思!Java8后最有用新特性排行榜!
java·后端·面试
代码匠心15 小时前
从零开始学Flink:数据源
java·大数据·后端·flink
moisture16 小时前
CUDA常规知识点
后端·面试
zcychong16 小时前
ArrayMap、SparseArray和HashMap有什么区别?该如何选择?
android·面试