【Python机器学习】NLP分词——利用分词器构建词汇表(三)——度量词袋之间的重合度

如果能够度量两个向量词袋之间的重合度,就可以很好地估计他们所用词的相似程度,而这也是它们语义上重合度的一个很好的估计。因此,下面用点积来估计一些新句子和原始的Jefferson句子之间的词袋向量重合度:

python 复制代码
import pandas as pd

sentence="""
Thomas Jefferson Began buliding Monticelli as the age of 26.\n
"""
sentence=sentence+"""Construction was done mostly by local masons and carpenters.\n"""
sentence=sentence+"""He moved into the South Pavilion in 1770.\n"""
sentence=sentence+"""Turning Monticello into a neoclassical masterpiece was Thomas Jefferson's obsession."""
corpus={}
#一般来说,只需要使用.splitlines()即可,但是这里显式地在每个行尾增加了 \n  字符,因此这里要显式地对此字符串进行分割
for i,sent in enumerate(sentence.split('\n')):
    corpus['sent{}'.format(i)]=dict((tok,1) for tok in sent.split())
df=pd.DataFrame.from_records(corpus).fillna(0).astype(int).T

df=df.T
print(df.sent0.dot(df.sent1))
print(df.sent0.dot(df.sent2))
print(df.sent0.dot(df.sent3))

运行结果表明,没有词同时出现在sent0和其他句子中。

词之间的重合度可以作为句子相似度的一种度量方法。

下面是一种找出sent0和sent3之间共享词(如果有)的方法:

python 复制代码
print([(k,v) for (k,v) in (df.sent0 & df.sent3).items() if v])

这是自然语言文档(句子)的第一个向量空间模型VSM)。对于词袋向量,不仅可以使用点积,也可以定义其他的向量运算,如向量加、减、OR与AND等,甚至还可以采用类似欧几里得距离或者向量夹角这样的运算。将文档表示成二值向量具有巨大的作用、所有现代CPI都有硬连线内存寻址指令,这些指令可以有效地哈希、索引和搜索大量这样的二值向量。虽然这些指令是为另一个目的(索引内存位置以从内存中检索数据)而构建的,但是它们在搜索和检索文本的二值向量运算中同样有效。

相关推荐
强化学习与机器人控制仿真3 分钟前
字节最新开源模型 DA3(Depth Anything 3)使用教程(一)从任意视角恢复视觉空间
人工智能·深度学习·神经网络·opencv·算法·目标检测·计算机视觉
Teacher.chenchong16 分钟前
R语言实现物种分布预测与生态位分析:多元算法实现物种气候生态位动态分析与分布预测,涵盖数据清洗、模型评价到论文写作全流程
开发语言·算法·r语言
机器之心18 分钟前
如视发布空间大模型Argus1.0,支持全景图等多元输入,行业首创!
人工智能·openai
Elastic 中国社区官方博客18 分钟前
Elasticsearch:如何创建知识库并使用 AI Assistant 来配置 slack 连接器
大数据·人工智能·elasticsearch·搜索引擎·全文检索·信息与通信
Baihai_IDP20 分钟前
分享一名海外独立开发者的 AI 编程工作流
人工智能·llm·ai编程
油炸小波22 分钟前
02-AI应用开发平台Dify
人工智能·python·dify·coze
机器之心25 分钟前
Gemini 3深夜来袭:力压GPT 5.1,大模型谷歌时代来了
人工智能·openai
烤麻辣烫32 分钟前
23种设计模式(新手)-7迪米特原则 合成复用原则
java·开发语言·学习·设计模式·intellij-idea
极客BIM工作室44 分钟前
LSTM门控机制:本质是神经元构成的小型网络
网络·机器学习·lstm
菠菠萝宝1 小时前
【Java手搓RAGFlow】-1- 环境准备
java·开发语言·人工智能·llm·openai·rag