【Python机器学习】NLP分词——利用分词器构建词汇表(三)——度量词袋之间的重合度

如果能够度量两个向量词袋之间的重合度,就可以很好地估计他们所用词的相似程度,而这也是它们语义上重合度的一个很好的估计。因此,下面用点积来估计一些新句子和原始的Jefferson句子之间的词袋向量重合度:

python 复制代码
import pandas as pd

sentence="""
Thomas Jefferson Began buliding Monticelli as the age of 26.\n
"""
sentence=sentence+"""Construction was done mostly by local masons and carpenters.\n"""
sentence=sentence+"""He moved into the South Pavilion in 1770.\n"""
sentence=sentence+"""Turning Monticello into a neoclassical masterpiece was Thomas Jefferson's obsession."""
corpus={}
#一般来说,只需要使用.splitlines()即可,但是这里显式地在每个行尾增加了 \n  字符,因此这里要显式地对此字符串进行分割
for i,sent in enumerate(sentence.split('\n')):
    corpus['sent{}'.format(i)]=dict((tok,1) for tok in sent.split())
df=pd.DataFrame.from_records(corpus).fillna(0).astype(int).T

df=df.T
print(df.sent0.dot(df.sent1))
print(df.sent0.dot(df.sent2))
print(df.sent0.dot(df.sent3))

运行结果表明,没有词同时出现在sent0和其他句子中。

词之间的重合度可以作为句子相似度的一种度量方法。

下面是一种找出sent0和sent3之间共享词(如果有)的方法:

python 复制代码
print([(k,v) for (k,v) in (df.sent0 & df.sent3).items() if v])

这是自然语言文档(句子)的第一个向量空间模型VSM)。对于词袋向量,不仅可以使用点积,也可以定义其他的向量运算,如向量加、减、OR与AND等,甚至还可以采用类似欧几里得距离或者向量夹角这样的运算。将文档表示成二值向量具有巨大的作用、所有现代CPI都有硬连线内存寻址指令,这些指令可以有效地哈希、索引和搜索大量这样的二值向量。虽然这些指令是为另一个目的(索引内存位置以从内存中检索数据)而构建的,但是它们在搜索和检索文本的二值向量运算中同样有效。

相关推荐
花菜会噎住1 天前
Vue3 路由配置和使用与讲解(超级详细)
开发语言·javascript·ecmascript·路由·router
大模型真好玩1 天前
LangGraph实战项目:从零手搓DeepResearch(二)——DeepResearch架构设计与实现
人工智能·python·langchain
细节控菜鸡1 天前
【2025最新】ArcGIS for JavaScript 快速实现热力图渲染
开发语言·javascript·arcgis
Elastic 中国社区官方博客1 天前
Elasticsearch 推理 API 增加了开放的可定制服务
大数据·数据库·人工智能·elasticsearch·搜索引擎·ai·全文检索
濑户川1 天前
基于DDGS实现图片搜索,文本搜索,新闻搜索
人工智能·爬虫·python
PingdiGuo_guo1 天前
C++构造和折构函数详解,超详细!
开发语言·c++
ReinaXue1 天前
大模型【进阶】(六)QWen2.5-VL视觉语言模型详细解读
图像处理·人工智能·神经网络·目标检测·计算机视觉·语言模型·transformer
童欧巴1 天前
去班味儿这件事,八爪鱼RPA敢做成这样?
人工智能·aigc
~kiss~1 天前
膨胀算法去除低谷噪声
人工智能·算法·计算机视觉
来知晓1 天前
语音处理:音频移形幻影,为何大振幅信号也无声
开发语言·音视频