【Python机器学习】NLP分词——利用分词器构建词汇表(三)——度量词袋之间的重合度

如果能够度量两个向量词袋之间的重合度,就可以很好地估计他们所用词的相似程度,而这也是它们语义上重合度的一个很好的估计。因此,下面用点积来估计一些新句子和原始的Jefferson句子之间的词袋向量重合度:

python 复制代码
import pandas as pd

sentence="""
Thomas Jefferson Began buliding Monticelli as the age of 26.\n
"""
sentence=sentence+"""Construction was done mostly by local masons and carpenters.\n"""
sentence=sentence+"""He moved into the South Pavilion in 1770.\n"""
sentence=sentence+"""Turning Monticello into a neoclassical masterpiece was Thomas Jefferson's obsession."""
corpus={}
#一般来说,只需要使用.splitlines()即可,但是这里显式地在每个行尾增加了 \n  字符,因此这里要显式地对此字符串进行分割
for i,sent in enumerate(sentence.split('\n')):
    corpus['sent{}'.format(i)]=dict((tok,1) for tok in sent.split())
df=pd.DataFrame.from_records(corpus).fillna(0).astype(int).T

df=df.T
print(df.sent0.dot(df.sent1))
print(df.sent0.dot(df.sent2))
print(df.sent0.dot(df.sent3))

运行结果表明,没有词同时出现在sent0和其他句子中。

词之间的重合度可以作为句子相似度的一种度量方法。

下面是一种找出sent0和sent3之间共享词(如果有)的方法:

python 复制代码
print([(k,v) for (k,v) in (df.sent0 & df.sent3).items() if v])

这是自然语言文档(句子)的第一个向量空间模型VSM)。对于词袋向量,不仅可以使用点积,也可以定义其他的向量运算,如向量加、减、OR与AND等,甚至还可以采用类似欧几里得距离或者向量夹角这样的运算。将文档表示成二值向量具有巨大的作用、所有现代CPI都有硬连线内存寻址指令,这些指令可以有效地哈希、索引和搜索大量这样的二值向量。虽然这些指令是为另一个目的(索引内存位置以从内存中检索数据)而构建的,但是它们在搜索和检索文本的二值向量运算中同样有效。

相关推荐
身如柳絮随风扬24 分钟前
Java中的CAS机制详解
java·开发语言
0思必得02 小时前
[Web自动化] Selenium处理动态网页
前端·爬虫·python·selenium·自动化
水如烟2 小时前
孤能子视角:“组织行为学–组织文化“
人工智能
韩立学长2 小时前
【开题答辩实录分享】以《基于Python的大学超市仓储信息管理系统的设计与实现》为例进行选题答辩实录分享
开发语言·python
大山同学2 小时前
图片补全-Context Encoder
人工智能·机器学习·计算机视觉
qq_192779872 小时前
高级爬虫技巧:处理JavaScript渲染(Selenium)
jvm·数据库·python
薛定谔的猫19822 小时前
十七、用 GPT2 中文对联模型实现经典上联自动对下联:
人工智能·深度学习·gpt2·大模型 训练 调优
u0109272712 小时前
使用Plotly创建交互式图表
jvm·数据库·python
爱学习的阿磊2 小时前
Python GUI开发:Tkinter入门教程
jvm·数据库·python
froginwe112 小时前
Scala 循环
开发语言