AI学习记录 - 怎么理解 torch 的 torch.nn.BatchNorm2d

画图不易,有用就点个赞

这里创建了一个随机张量,形状为 (4, 3, 4, 4),分别对应

形状为 (batch_size, num_channels, height, width)

batch_size:批次

num_channels: 通道(什么是通道看上一章节)

python 复制代码
input_tensor = torch.randn(4, 3, 4, 4)

创建了个下面这样子的东西

计算归一化是需要参考值的,因为需要知道最大值最小值,已经参与计算的数量,参考值来自于哪里呢,如下

合并起来,可以看到 num_channels = 3,所以分别计算3次

计算均值和方差公式如下:

看不懂是不是,我也看不懂,举个简单的例子

假设一批数字为 [3, 7, 2, 9, 4]

均值

方差

然后进行归一化

计算完之后形状不会改变,只是值变了而已,上面新的数字组合起来均值接近0,方差接近1。其实认识这个计算过程意义不是很大,你就当在实际模型运算的时候,肯定会产生一些很大的值很小的值,假如生成的数据区间在[ 50,120 ],我们需要将这些值传入到激活函数里面,把 50 到120 传sigmoid激活函数里面,基本上都是0.9999...,数据之间根本没差异。

sigmoid函数,不进行归一化

sigmoid函数,归一化,将数字移动到激活函数有明显变化的区域,这就有差异了,充分发挥了激活函数的作用

相关推荐
Yupureki4 分钟前
《算法竞赛从入门到国奖》算法基础:入门篇-贪心算法(下)
c语言·c++·学习·算法·贪心算法
vx_bisheyuange4 分钟前
基于SpringBoot的知识竞赛系统
大数据·前端·人工智能·spring boot·毕业设计
am心5 分钟前
学习笔记-添加购物车
笔记·学习
Ryan老房8 分钟前
从LabelImg到TjMakeBot-标注工具的进化史
人工智能·yolo·目标检测·计算机视觉·ai
Coding茶水间8 分钟前
基于深度学习的吸烟检测系统演示与介绍(YOLOv12/v11/v8/v5模型+Pyqt5界面+训练代码+数据集)
开发语言·人工智能·深度学习·yolo·目标检测·机器学习
Aaron_94510 分钟前
VideoRAG:革新视频理解的检索增强生成技术深度解析
人工智能·音视频
FlameAIStudio11 分钟前
用人格模型去做漫威角色测试,是比娱乐向更严肃的一种设计
人工智能·机器学习·娱乐
心态特好11 分钟前
RAG实战!!本地知识库检索
人工智能
San30.16 分钟前
LangChain 第二课:拒绝“废话”,用 Zod 强制 AI 输出标准 JSON
人工智能·langchain·json
来两个炸鸡腿18 分钟前
【Datawhale组队学习202601】Base-NLP task02 预训练语言模型
学习·语言模型·自然语言处理