AI学习记录 - 怎么理解 torch 的 torch.nn.BatchNorm2d

画图不易,有用就点个赞

这里创建了一个随机张量,形状为 (4, 3, 4, 4),分别对应

形状为 (batch_size, num_channels, height, width)

batch_size:批次

num_channels: 通道(什么是通道看上一章节)

python 复制代码
input_tensor = torch.randn(4, 3, 4, 4)

创建了个下面这样子的东西

计算归一化是需要参考值的,因为需要知道最大值最小值,已经参与计算的数量,参考值来自于哪里呢,如下

合并起来,可以看到 num_channels = 3,所以分别计算3次

计算均值和方差公式如下:

看不懂是不是,我也看不懂,举个简单的例子

假设一批数字为 [3, 7, 2, 9, 4]

均值

方差

然后进行归一化

计算完之后形状不会改变,只是值变了而已,上面新的数字组合起来均值接近0,方差接近1。其实认识这个计算过程意义不是很大,你就当在实际模型运算的时候,肯定会产生一些很大的值很小的值,假如生成的数据区间在[ 50,120 ],我们需要将这些值传入到激活函数里面,把 50 到120 传sigmoid激活函数里面,基本上都是0.9999...,数据之间根本没差异。

sigmoid函数,不进行归一化

sigmoid函数,归一化,将数字移动到激活函数有明显变化的区域,这就有差异了,充分发挥了激活函数的作用

相关推荐
梦雨羊4 小时前
LitGPT
学习
木枷4 小时前
SWE-smith: Scaling Data for Software Engineering Agents
人工智能·软件工程
未来之窗软件服务4 小时前
AI人工智能(四)本地部署vosk-ASR环境命令—东方仙盟练气期
linux·运维·人工智能·本地模型·仙盟创梦ide·东方仙盟
学易4 小时前
第二十节.探索新技术:如何自学SD3模型(上)(找官方资料/精读/下载/安装/3款工作流/效果测试)
人工智能·ai作画·stable diffusion·comfyui·工作流·sd3
新缸中之脑4 小时前
WebMCP:超越屏幕抓取
人工智能
狮子座明仔4 小时前
SkillRL:让AI智能体学会“练功升级“的递归技能强化学习框架
人工智能·深度学习·自然语言处理
tzc_fly4 小时前
深度范式转移:漂移模型(Drifting Models)解析
人工智能
小雨中_4 小时前
3.5 ReMax:用 Greedy 作为基线的 REINFORCE + RLOO
人工智能·python·深度学习·机器学习·自然语言处理
TImCheng06094 小时前
方法论:将AI深度嵌入工作流的“场景-工具-SOP”三步法
大数据·人工智能
geneculture4 小时前
四维矩阵分析:人机互助超级个体与超级OPC关系研究——基于HI×AI、个体×团队、个体×OPC与波士顿矩阵的整合框架
人工智能·百度