AI学习记录 - 怎么理解 torch 的 torch.nn.BatchNorm2d

画图不易,有用就点个赞

这里创建了一个随机张量,形状为 (4, 3, 4, 4),分别对应

形状为 (batch_size, num_channels, height, width)

batch_size:批次

num_channels: 通道(什么是通道看上一章节)

python 复制代码
input_tensor = torch.randn(4, 3, 4, 4)

创建了个下面这样子的东西

计算归一化是需要参考值的,因为需要知道最大值最小值,已经参与计算的数量,参考值来自于哪里呢,如下

合并起来,可以看到 num_channels = 3,所以分别计算3次

计算均值和方差公式如下:

看不懂是不是,我也看不懂,举个简单的例子

假设一批数字为 [3, 7, 2, 9, 4]

均值

方差

然后进行归一化

计算完之后形状不会改变,只是值变了而已,上面新的数字组合起来均值接近0,方差接近1。其实认识这个计算过程意义不是很大,你就当在实际模型运算的时候,肯定会产生一些很大的值很小的值,假如生成的数据区间在[ 50,120 ],我们需要将这些值传入到激活函数里面,把 50 到120 传sigmoid激活函数里面,基本上都是0.9999...,数据之间根本没差异。

sigmoid函数,不进行归一化

sigmoid函数,归一化,将数字移动到激活函数有明显变化的区域,这就有差异了,充分发挥了激活函数的作用

相关推荐
楚来客20 小时前
AI基础概念之八:Transformer算法通俗解析
人工智能·算法·transformer
风送雨20 小时前
FastMCP 2.0 服务端开发教学文档(下)
服务器·前端·网络·人工智能·python·ai
效率客栈老秦20 小时前
Python Trae提示词开发实战(8):数据采集与清洗一体化方案让效率提升10倍
人工智能·python·ai·提示词·trae
小和尚同志20 小时前
虽然 V0 很强大,但是ScreenshotToCode 依旧有市场
人工智能·aigc
HyperAI超神经20 小时前
【vLLM 学习】Rlhf
人工智能·深度学习·学习·机器学习·vllm
芯盾时代20 小时前
石油化工行业网络风险解决方案
网络·人工智能·信息安全
线束线缆组件品替网20 小时前
Weidmüller 工业以太网线缆技术与兼容策略解析
网络·人工智能·电脑·硬件工程·材料工程
lambo mercy20 小时前
深度学习3:新冠病毒感染人数预测
人工智能·深度学习
Echo_NGC223720 小时前
【神经视频编解码NVC】传统神经视频编解码完全指南:从零读懂 AI 视频压缩的基石
人工智能·深度学习·算法·机器学习·视频编解码
摆烂咸鱼~20 小时前
机器学习(10)
人工智能·机器学习·支持向量机