AI学习记录 - 怎么理解 torch 的 torch.nn.BatchNorm2d

画图不易,有用就点个赞

这里创建了一个随机张量,形状为 (4, 3, 4, 4),分别对应

形状为 (batch_size, num_channels, height, width)

batch_size:批次

num_channels: 通道(什么是通道看上一章节)

python 复制代码
input_tensor = torch.randn(4, 3, 4, 4)

创建了个下面这样子的东西

计算归一化是需要参考值的,因为需要知道最大值最小值,已经参与计算的数量,参考值来自于哪里呢,如下

合并起来,可以看到 num_channels = 3,所以分别计算3次

计算均值和方差公式如下:

看不懂是不是,我也看不懂,举个简单的例子

假设一批数字为 [3, 7, 2, 9, 4]

均值

方差

然后进行归一化

计算完之后形状不会改变,只是值变了而已,上面新的数字组合起来均值接近0,方差接近1。其实认识这个计算过程意义不是很大,你就当在实际模型运算的时候,肯定会产生一些很大的值很小的值,假如生成的数据区间在[ 50,120 ],我们需要将这些值传入到激活函数里面,把 50 到120 传sigmoid激活函数里面,基本上都是0.9999...,数据之间根本没差异。

sigmoid函数,不进行归一化

sigmoid函数,归一化,将数字移动到激活函数有明显变化的区域,这就有差异了,充分发挥了激活函数的作用

相关推荐
AKAMAI6 小时前
Akamai Cloud客户案例 | Avesha 在 Akamai 云上扩展 Kubernetes 解决方案
人工智能·云计算
wasp5206 小时前
AgentScope Java 核心架构深度解析
java·开发语言·人工智能·架构·agentscope
智算菩萨6 小时前
高效多模态大语言模型:从统一框架到训练与推理效率的系统化理论梳理
大数据·人工智能·多模态
free-elcmacom6 小时前
深度学习<4>高效模型架构与优化器的“效率革命”
人工智能·python·深度学习·机器学习·架构
半夏知半秋6 小时前
docker常用指令整理
运维·笔记·后端·学习·docker·容器
liliangcsdn6 小时前
python模拟beam search优化LLM输出过程
人工智能·python
算法与编程之美6 小时前
深度学习任务中的多层卷积与全连接输出方法
人工智能·深度学习
Deepoch7 小时前
具身智能产业新范式:Deepoc开发板如何破解机器人智能化升级难题
人工智能·科技·机器人·开发板·具身模型·deepoc
蒸蒸yyyyzwd7 小时前
网络编程——threadpool.h学习笔记
笔记·学习