RKNPU2从入门到实践 --- 【4】RKNN 模型构建【使用pycharm一步一步搭建RKNN模型】

目录

前言

[1.1 RKNN 初始化及对象释放](#1.1 RKNN 初始化及对象释放)

[1.1.1 概念介绍](#1.1.1 概念介绍)

[1.1.2 实际演示](#1.1.2 实际演示)

[1.2 RKNN 模型配置](#1.2 RKNN 模型配置)

[1.2.1 概念介绍](#1.2.1 概念介绍)

[1.2.2 实际演示](#1.2.2 实际演示)

[1.3 模型加载](#1.3 模型加载)

[1.3.1 概念介绍](#1.3.1 概念介绍)

[1.3.1.1 Caffe模型加载接口](#1.3.1.1 Caffe模型加载接口)

[1.3.1.2 TensorFlow模型加载接口](#1.3.1.2 TensorFlow模型加载接口)

[1.3.1.3 TensorFlowLite 模型加载接口](#1.3.1.3 TensorFlowLite 模型加载接口)

[1.3.1.4 ONNX 模型加载接口](#1.3.1.4 ONNX 模型加载接口)

[1.3.1.5 DarkNet模型加载接口 ​编辑​编辑](#1.3.1.5 DarkNet模型加载接口 编辑编辑)

[1.3.1.6 PyTorch 模型加载接口](#1.3.1.6 PyTorch 模型加载接口)

[​编辑 1.3.2 实际演示](#编辑 1.3.2 实际演示)

[1.4 构建RKNN模型](#1.4 构建RKNN模型)

[1.4.1 概念介绍](#1.4.1 概念介绍)

[​编辑1.4.2 实际演示](#编辑1.4.2 实际演示)

[1.5 导出RKNN模型](#1.5 导出RKNN模型)

[1.5.1 概念介绍](#1.5.1 概念介绍)

[1.5.2 实际演示](#1.5.2 实际演示)

[1.6 最终测试](#1.6 最终测试)

前言

本篇博文中所使用到的系统为Ubuntu 20系统,搭建好RKNN Toolkit2环境后,方可继续往下看。

RKNN Toolkit2使用流程图如下所示:

RKNN模型构建流程如下图所示:

打开 VMware 虚拟软件,启动linux虚拟系【Ubuntu20系统】,在该系统中你已经配置好了RKNNToolkit2环境。

随后打开pycharm【在虚拟linux系统中打开的pycharm】,创建一个名为 export_rknn_learning 的文件夹,在该文件夹中创建一个名为export_rknn.py文件,创建一个log.txt文件用于存放日志信息,如下图所示。
随后按照如下步骤:

1.1 RKNN 初始化及对象释放

1.1.1 概念介绍

在使用 RKNNToolkit2 的所有 API 接口时,都需要先调用 RKNN()方法初始化 RKNN 对象,当不 再使用该对象时,通过调用该对象的 release()方法进行释放。

初始化 RKNN 对象时,可以设置 verbose 和 verbose_file 参数,从而打印详细的日志信息。其 中 verbose 参数指定是否要在终端打印详细日志信息;如果设置了 verbose_file 参数,且 verbose 参数值为 True,日志信息还将写到该参数指定的文件中。 举例如下:

python 复制代码
from rknn.api import RKNN
#将详细的日志信息输出到终端,并写到 mobilenet_build.log 文件中
rknn=RKNN(verbose=True,verbose_file='./mobilenet_build.log')
rknn=RKNN(verbose=True) #将详细的日志信息输出到终端
...
rknn.release()
1.1.2 实际演示

第一步和最后一步的代码如下所示:

运行上述代码,得到:

log.txt 文件中的内容为:

红色框给出了 rknn-toolkit2 的版本,蓝色框给出了已经将日志log信息保存到 log.txt 文件中。

1.2 RKNN 模型配置

1.2.1 概念介绍

在构建 RKNN 模型之前,需要先对模型进行通道均值、量化图片 RGB2BGR 转换、量化类型等配置,这些操作需要通过 config 接口进行配置。

举例如下:

python 复制代码
rknn.config(mean_values=[123.675,116.28,103.53],std_values=[58.395,58.395,58.395])
1.2.2 实际演示

第二步代码如下:

第二步代码添入后整体代码如下所示:

python 复制代码
from rknn.api import RKNN

if __name__ == '__main__':

    # 第一步:创建一个RKNN对象
    rknn = RKNN(verbose=True, verbose_file='log.txt')
    
    # 第二步:调用config接口配置要生成的RKNN模型
    rknn.config(
        mean_values=[[123.675, 116.28,103.53]], # mean_values 表示预处理要减去的均值化参数
        std_values=[[58.395, 58.395, 58.395]], # std_values 表示预处理要除的标准化参数
        # 上面这两个参数在模型训练时就已经设置好了,在这里应与训练时的取值一至
        quantized_dtype='asymetric_quantized-8', # quantized_dtype 表示量化类型
        quantized_method='channel', # quantized_method 表示量化的方式
        quantized_algorithm='normal', # quantized_algorithm 表示量化的算法
        quant_img_RGB2BGR=False, # 
        target_platform='rk3588', # target_platform 表示RKNN模型的运行平台
        float_dtype='float16', # float_dtype 表示RKNN模型中的默认浮点数类型
        optimization_level=3, # optimization_level 表示模型优化等级
        custom_string='this is my rknn model', # 添加自定义字符串信息到 RKNN 模型
        remove_weight=False, # remove_weight 表示生成一个去除权重信息的从模型
        compress_weight=False, # 压缩模型权重,可以减小RKNN模型的大小。默认为False
        inputs_yuv_fmt=False, # 表示RKNN模型输入数据的YUV格式
        single_core_mode=False # 表示构建的RKNN模型运行在单核心模式,只适用RK3588
        
    )
    # 第三步:
    # 最后一步:释放RKNN对象(不再使用RKNN时)
    rknn.release()

1.3 模型加载

1.3.1 概念介绍

RKNN-Toolkit2 目前支持 Caffe、TensorFlow、TensorFlowLite、ONNX、DarkNet、PyTorch 等模型 的加载转换,这些模型在加载时需调用对应的接口,以下为这些接口的详细说明。

1.3.1.1 Caffe模型加载接口
1.3.1.2 TensorFlow模型加载接口

举例如下:

1.3.1.3 TensorFlowLite 模型加载接口
1.3.1.4 ONNX 模型加载接口
1.3.1.5 DarkNet模型加载接口


1.3.1.6 PyTorch 模型加载接口

1.3.2 实际演示

我们以pytorch模型结构为例,将提前准备好的 resnet18.pt 文件复制粘贴到虚拟机虚拟系统中的项目文件夹中,如下所示:

第三步代码如下:

第三步代码添入后整体代码如下:

python 复制代码
from rknn.api import RKNN

if __name__ == '__main__':

    # 第一步:创建一个RKNN对象
    rknn = RKNN(verbose=True, verbose_file='log.txt')
    
    # 第二步:调用config接口配置要生成的RKNN模型
    rknn.config(
        mean_values=[[123.675, 116.28,103.53]], # mean_values 表示预处理要减去的均值化参数
        std_values=[[58.395, 58.395, 58.395]], # std_values 表示预处理要除的标准化参数
        # 上面这两个参数在模型训练时就已经设置好了,在这里应与训练时的取值一至
        quantized_dtype='asymetric_quantized-8', # quantized_dtype 表示量化类型
        quantized_method='channel', # quantized_method 表示量化的方式
        quantized_algorithm='normal', # quantized_algorithm 表示量化的算法
        quant_img_RGB2BGR=False, # 
        target_platform='rk3588', # target_platform 表示RKNN模型的运行平台
        float_dtype='float16', # float_dtype 表示RKNN模型中的默认浮点数类型
        optimization_level=3, # optimization_level 表示模型优化等级
        custom_string='this is my rknn model', # 添加自定义字符串信息到 RKNN 模型
        remove_weight=False, # remove_weight 表示生成一个去除权重信息的从模型
        compress_weight=False, # 压缩模型权重,可以减小RKNN模型的大小。默认为False
        inputs_yuv_fmt=False, # 表示RKNN模型输入数据的YUV格式
        single_core_mode=False # 表示构建的RKNN模型运行在单核心模式,只适用RK3588
        
    )
    # 第三步:添加 load_xxx 接口进行常用深度学习模型的导入
    rknn.load_pytorch(
        model='./resnet18.pt', # model表示加载模型的地址
        input_size_list=[[1, 3, 224, 224]], # input_size_list 表示模型输入节点对应图片的尺寸和通道数
    )
    # 最后一步:释放RKNN对象(不再使用RKNN时)
    rknn.release()

1.4 构建RKNN模型

1.4.1 概念介绍


举例如下:

1.4.2 实际演示

第四步的代码如下:

第四步代码添入后整体代码如下:

python 复制代码
from rknn.api import RKNN

if __name__ == '__main__':

    # 第一步:创建一个RKNN对象
    rknn = RKNN(verbose=True, verbose_file='log.txt')
    
    # 第二步:调用config接口配置要生成的RKNN模型
    rknn.config(
        mean_values=[[123.675, 116.28,103.53]], # mean_values 表示预处理要减去的均值化参数
        std_values=[[58.395, 58.395, 58.395]], # std_values 表示预处理要除的标准化参数
        # 上面这两个参数在模型训练时就已经设置好了,在这里应与训练时的取值一至
        quantized_dtype='asymetric_quantized-8', # quantized_dtype 表示量化类型
        quantized_method='channel', # quantized_method 表示量化的方式
        quantized_algorithm='normal', # quantized_algorithm 表示量化的算法
        quant_img_RGB2BGR=False, # 
        target_platform='rk3588', # target_platform 表示RKNN模型的运行平台
        float_dtype='float16', # float_dtype 表示RKNN模型中的默认浮点数类型
        optimization_level=3, # optimization_level 表示模型优化等级
        custom_string='this is my rknn model', # 添加自定义字符串信息到 RKNN 模型
        remove_weight=False, # remove_weight 表示生成一个去除权重信息的从模型
        compress_weight=False, # 压缩模型权重,可以减小RKNN模型的大小。默认为False
        inputs_yuv_fmt=False, # 表示RKNN模型输入数据的YUV格式
        single_core_mode=False # 表示构建的RKNN模型运行在单核心模式,只适用RK3588
        
    )
    # 第三步:添加 load_xxx 接口进行常用深度学习模型的导入
    rknn.load_pytorch(
        model='./resnet18.pt', # model表示加载模型的地址
        input_size_list=[[1, 3, 224, 224]], # input_size_list 表示模型输入节点对应图片的尺寸和通道数
    )

    # 第四步:使用build接口来构建RKNN模型
    rknn.build(
        do_quantization=True, # do_quantization 表示是否对RKNN模型进行量化操作
        dataset='dataset.txt', # dataset 表示要量化的图片
        rknn_batch_size=-1, # 目前用不到
    )
    # 最后一步:释放RKNN对象(不再使用RKNN时)
    rknn.release()

1.5 导出RKNN模型

1.5.1 概念介绍

通过本工具构建的 RKNN 模型通过该接口可以导出存储为 RKNN 模型文件,用于模型部署。

1.5.2 实际演示

第五步代码如下所示:

第五步代码添入后的整体代码如下所示:

python 复制代码
from rknn.api import RKNN

if __name__ == '__main__':

    # 第一步:创建一个RKNN对象
    rknn = RKNN(verbose=True, verbose_file='log.txt')
    
    # 第二步:调用config接口配置要生成的RKNN模型
    rknn.config(
        mean_values=[[123.675, 116.28,103.53]], # mean_values 表示预处理要减去的均值化参数
        std_values=[[58.395, 58.395, 58.395]], # std_values 表示预处理要除的标准化参数
        # 上面这两个参数在模型训练时就已经设置好了,在这里应与训练时的取值一至
        quantized_dtype='asymetric_quantized-8', # quantized_dtype 表示量化类型
        quantized_method='channel', # quantized_method 表示量化的方式
        quantized_algorithm='normal', # quantized_algorithm 表示量化的算法
        quant_img_RGB2BGR=False, # 
        target_platform='rk3588', # target_platform 表示RKNN模型的运行平台
        float_dtype='float16', # float_dtype 表示RKNN模型中的默认浮点数类型
        optimization_level=3, # optimization_level 表示模型优化等级
        custom_string='this is my rknn model', # 添加自定义字符串信息到 RKNN 模型
        remove_weight=False, # remove_weight 表示生成一个去除权重信息的从模型
        compress_weight=False, # 压缩模型权重,可以减小RKNN模型的大小。默认为False
        inputs_yuv_fmt=False, # 表示RKNN模型输入数据的YUV格式
        single_core_mode=False # 表示构建的RKNN模型运行在单核心模式,只适用RK3588
        
    )
    # 第三步:添加 load_xxx 接口进行常用深度学习模型的导入
    rknn.load_pytorch(
        model='./resnet18.pt', # model表示加载模型的地址
        input_size_list=[[1, 3, 224, 224]], # input_size_list 表示模型输入节点对应图片的尺寸和通道数
    )

    # 第四步:使用build接口来构建RKNN模型
    rknn.build(
        do_quantization=True, # do_quantization 表示是否对RKNN模型进行量化操作
        dataset='dataset.txt', # dataset 表示要量化的图片
        rknn_batch_size=-1, # 目前用不到
    )
    # 第五步:调用export_rknn接口导出RKNN模型
    rknn.export_rknn(
        export_path='resnet18.rknn',# 表示导出的RKNN模型路径
    )
    # 最后一步:释放RKNN对象(不再使用RKNN时)
    rknn.release()

1.6 最终测试

经过了前面的步骤,我们现在可以通过运行代码来完成了RKNN模型的导出工作,运行代码,得到如下图所示:

至此,我们完成了RKNN模型的导出工作,接下来可进行模型评估工作了。

相关推荐
music0ant4 分钟前
Idean 处理一个项目引用另外一个项目jar 但jar版本低的问题
java·pycharm·jar
i查拉图斯特拉如是25 分钟前
基于MindSpore NLP的PEFT微调
人工智能·自然语言处理
CSND74028 分钟前
Ubuntu vi(vim)编辑器配置一键补全main函数
linux·c语言·ubuntu·编辑器·vim
mahuifa30 分钟前
QtCreator配置github copilot实现AI辅助编程
人工智能·ai编程·github copilot·qtcreator
千穹凌帝34 分钟前
基于深度学习多图像融合的屏幕缺陷检测方案
人工智能·深度学习·数码相机
檀越剑指大厂2 小时前
【Python系列】Python中的`any`函数:检查“至少有一个”条件满足
开发语言·python
Mr-Apple2 小时前
windows编译googletest框架搭配vscode调试
ide·windows·vscode
程序员黄同学2 小时前
如何使用 Python 连接 MySQL 数据库?
数据库·python·mysql
I_Am_Me_2 小时前
【JavaEE初阶】线程安全问题
开发语言·python
张叔zhangshu3 小时前
TensorFlow 的基本概念和使用场景
人工智能·python·tensorflow