【Python机器学习】NLP词中的数学——齐普夫定律

齐普夫定律指出:在给定的自然语言语料库中,任何一个词的频率与它在频率表中的排名成反比。

具体的说,这里的反比例关系指的是这样一种情况:排序列表中某一项的出现频率与其在排序列表中的排名成反比。例如,排序列表中的第一项出现的频率是第二项的2倍,是第三项的3倍。对于任何语料库或文档,我们可以快速做的一件事就是:绘制词的使用频率与它们的频率排名之间的关系。

齐普夫定律适用于很多东西的计数。比如某国城市人口与该人口排名之间的关系:

文字当然也满足相似的规律:

python 复制代码
import nltk
nltk.download('brown')
from nltk.corpus import brown

print(brown.words()[:10])
print(brown.tagged_words()[:5])
print(len(brown.words()))

这是一个超过100万词条的文档,下面看一下其中的信息:

python 复制代码
from collections import Counter
puncs=set((',','.','--','-','!','?',';',':','``',"''",'(',')','[',']'))
word_list=(x.lower() for x in brown.words() if x not in puncs)
token_counts=Counter(word_list)
print(token_counts.most_common(20))

上面语料库中的词频符合齐普夫预测的对数线性关系。"the"出现的频率大约是"of"的2倍、"and"的3倍。

简而言之,如果把语料库的词按照出现次数按降序排列,我们会发现:对一个足够大的样本,出现次数排名第一的词在语料库中出现次数是排名第二的词的两倍,是排名第四的词的四倍。因此,给定一个大型语料库,可以用上述数字来粗略统计给定词出现在该语料库的任何给定文档中的可能性。

相关推荐
do better myself几秒前
php 使用IP2Location限制指定的国家访问实现
开发语言·php
hui函数2 分钟前
Python系列Bug修复PyCharm控制台pip install报错:如何解决 pip install 网络报错 企业网关拦截 User-Agent 问题
python·pycharm·bug
猫头虎2 分钟前
Claude Code 永动机:ralph-loop 无限循环迭代插件详解(安装 / 原理 / 最佳实践 / 避坑)
ide·人工智能·langchain·开源·编辑器·aigc·编程技术
a努力。5 分钟前
虾皮Java面试被问:JVM Native Memory Tracking追踪堆外内存泄漏
java·开发语言·jvm·后端·python·面试
Kratzdisteln6 分钟前
【Python】Flask
开发语言·python·flask
aigcapi6 分钟前
如何让AI推广我的品牌?成长期企业GEO优化的“降本增效”实战指南
人工智能
古城小栈9 分钟前
Rust 并发、异步,碾碎它们
开发语言·后端·rust
Evand J13 分钟前
【MATLAB代码介绍】【空地协同】UAV辅助的UGV协同定位,无人机辅助地面无人车定位,带滤波,MATLAB
开发语言·matlab·无人机·协同·路径·多机器人
百***243713 分钟前
GPT-5.2国内调用+API中转+成本管控
大数据·人工智能·深度学习
min18112345620 分钟前
金融风控中的实时行为建模
大数据·人工智能