【Python机器学习】NLP词中的数学——齐普夫定律

齐普夫定律指出:在给定的自然语言语料库中,任何一个词的频率与它在频率表中的排名成反比。

具体的说,这里的反比例关系指的是这样一种情况:排序列表中某一项的出现频率与其在排序列表中的排名成反比。例如,排序列表中的第一项出现的频率是第二项的2倍,是第三项的3倍。对于任何语料库或文档,我们可以快速做的一件事就是:绘制词的使用频率与它们的频率排名之间的关系。

齐普夫定律适用于很多东西的计数。比如某国城市人口与该人口排名之间的关系:

文字当然也满足相似的规律:

python 复制代码
import nltk
nltk.download('brown')
from nltk.corpus import brown

print(brown.words()[:10])
print(brown.tagged_words()[:5])
print(len(brown.words()))

这是一个超过100万词条的文档,下面看一下其中的信息:

python 复制代码
from collections import Counter
puncs=set((',','.','--','-','!','?',';',':','``',"''",'(',')','[',']'))
word_list=(x.lower() for x in brown.words() if x not in puncs)
token_counts=Counter(word_list)
print(token_counts.most_common(20))

上面语料库中的词频符合齐普夫预测的对数线性关系。"the"出现的频率大约是"of"的2倍、"and"的3倍。

简而言之,如果把语料库的词按照出现次数按降序排列,我们会发现:对一个足够大的样本,出现次数排名第一的词在语料库中出现次数是排名第二的词的两倍,是排名第四的词的四倍。因此,给定一个大型语料库,可以用上述数字来粗略统计给定词出现在该语料库的任何给定文档中的可能性。

相关推荐
零售ERP菜鸟10 分钟前
数字系统的新角色:从管控工具到赋能平台
大数据·人工智能·职场和发展·创业创新·学习方法·业界资讯
喵手14 分钟前
Python爬虫实战:数据质量治理实战 - 构建企业级规则引擎与异常检测系统!
爬虫·python·爬虫实战·异常检测·零基础python爬虫教学·数据质量治理·企业级规则引擎
Howie Zphile16 分钟前
奇门遁甲x全面预算 # 双轨校准实务:资本化支出与经营目标设定的奇门-财务融合方案
大数据·人工智能
头发够用的程序员21 分钟前
Python 魔法方法 vs C++ 运算符重载全方位深度对比
开发语言·c++·python
csbysj202023 分钟前
Java 发送邮件
开发语言
加成BUFF33 分钟前
基于DeepSeek+Python开发软件并打包为exe(VSCode+Anaconda Prompt实操)
vscode·python·prompt·conda·anaconda
大模型任我行34 分钟前
腾讯:Agent视觉隐喻迁移
人工智能·语言模型·自然语言处理·论文笔记
weixin_448119941 小时前
Datawhale Easy-Vibe 202602 第1次笔记
人工智能
星火开发设计1 小时前
异常规范与自定义异常类的设计
java·开发语言·前端·c++
xyq20241 小时前
SQL Mid() 函数详解
开发语言