【Python机器学习】NLP词中的数学——齐普夫定律

齐普夫定律指出:在给定的自然语言语料库中,任何一个词的频率与它在频率表中的排名成反比。

具体的说,这里的反比例关系指的是这样一种情况:排序列表中某一项的出现频率与其在排序列表中的排名成反比。例如,排序列表中的第一项出现的频率是第二项的2倍,是第三项的3倍。对于任何语料库或文档,我们可以快速做的一件事就是:绘制词的使用频率与它们的频率排名之间的关系。

齐普夫定律适用于很多东西的计数。比如某国城市人口与该人口排名之间的关系:

文字当然也满足相似的规律:

python 复制代码
import nltk
nltk.download('brown')
from nltk.corpus import brown

print(brown.words()[:10])
print(brown.tagged_words()[:5])
print(len(brown.words()))

这是一个超过100万词条的文档,下面看一下其中的信息:

python 复制代码
from collections import Counter
puncs=set((',','.','--','-','!','?',';',':','``',"''",'(',')','[',']'))
word_list=(x.lower() for x in brown.words() if x not in puncs)
token_counts=Counter(word_list)
print(token_counts.most_common(20))

上面语料库中的词频符合齐普夫预测的对数线性关系。"the"出现的频率大约是"of"的2倍、"and"的3倍。

简而言之,如果把语料库的词按照出现次数按降序排列,我们会发现:对一个足够大的样本,出现次数排名第一的词在语料库中出现次数是排名第二的词的两倍,是排名第四的词的四倍。因此,给定一个大型语料库,可以用上述数字来粗略统计给定词出现在该语料库的任何给定文档中的可能性。

相关推荐
西猫雷婶18 分钟前
python学opencv|读取图像(二十一)使用cv2.circle()绘制圆形进阶
开发语言·python·opencv
kiiila18 分钟前
【Qt】对象树(生命周期管理)和字符集(cout打印乱码问题)
开发语言·qt
小_太_阳44 分钟前
Scala_【2】变量和数据类型
开发语言·后端·scala·intellij-idea
直裾1 小时前
scala借阅图书保存记录(三)
开发语言·后端·scala
老刘莱国瑞1 小时前
STM32 与 AS608 指纹模块的调试与应用
python·物联网·阿里云
湫ccc1 小时前
《Opencv》基础操作详解(3)
人工智能·opencv·计算机视觉
Jack_pirate1 小时前
深度学习中的特征到底是什么?
人工智能·深度学习
唐 城1 小时前
curl 放弃对 Hyper Rust HTTP 后端的支持
开发语言·http·rust
微凉的衣柜1 小时前
微软在AI时代的战略布局和挑战
人工智能·深度学习·microsoft
GocNeverGiveUp2 小时前
机器学习1-简单神经网络
人工智能·机器学习