15.土堆说卷积操作(stride、padding)

土堆说卷积操作(可选看)

卷积神经网络中Padding和Stride的概念,Padding用于解决图像边缘信息丢失问题,保持输出矩阵尺寸;Stride则影响卷积的步进,改变输出大小。通过调整这两者,可以控制卷积层的输出特性。

这节来讲解卷积层 :Convolution Layers

先进入pytorch官方网站地址:torch.nn --- PyTorch 1.8.1 documentation

主要讲解 nn.Conve2d ,pytorch官方网站地址:Conv2d --- PyTorch 1.8.1 documentation

torch.nn 和 torch.nn.functional 的区别:前者是后者的封装,更利于使用

点击 torch.nn.functional - Convolution functions - conv2d 查看参数

stride(步进)

可以是单个数,或元组(sH,sW) --- 控制横向步进和纵向步进

卷积操作

卷积操作介绍

当 stride = 2 时,横向和纵向都是2,输出是一个2×2的矩阵

卷积操作实战

要求输入的维度 & reshape函数

  • input:尺寸要求是batch,几个通道,高,宽(4个参数)
  • weight:尺寸要求是输出,in_channels(groups一般为1),高,宽(4个参数)

使用 torch.reshape 函数,将输入改变为要求输入的维度

实现上图代码

复制代码
import torch
import torch.nn.functional as F
 
input =torch.tensor([[1,2,0,3,1],
                     [0,1,2,3,1],
                     [1,2,1,0,0],
                     [5,2,3,1,1],
                     [2,1,0,1,1]])   #将二维矩阵转为tensor数据类型
# 卷积核kernel
kernel = torch.tensor([[1,2,1],
                       [0,1,0],
                       [2,1,0]])
 
# 尺寸只有高和宽,不符合要求
print(input.shape)  #5×5
print(kernel.shape)  #3×3
 
# 尺寸变换为四个数字
input = torch.reshape(input,(1,1,5,5))  #通道数为1,batch大小为1
kernel = torch.reshape(kernel,(1,1,3,3))
print(input.shape)
print(kernel.shape)
 
output = F.conv2d(input,kernel,stride=1)  # .conv2d(input:Tensor, weight:Tensor, stride)
print(output)

输出结果为:

当将步进 stride 改为 2 时:

复制代码
output2 = F.conv2d(input,kernel,stride=2)
print(output2)

padding(填充)

在输入图像左右两边进行填充,决定填充有多大。可以为一个数或一个元组(分别指定高和宽,即纵向和横向每次填充的大小)。默认情况下不进行填充

padding=1:将输入图像左右上下两边都拓展一个像素,空的地方默认为0

代码实现:

复制代码
output3 = F.conv2d(input,kernel,stride=1,padding=1)
print(output3)

d(input,kernel,stride=1,padding=1)

print(output3)

复制代码
[外链图片转存中...(img-xxjUZlUQ-1724861517755)]
相关推荐
Ronin-Lotus4 小时前
深度学习篇---剪裁&缩放
图像处理·人工智能·缩放·剪裁
cpsvps4 小时前
3D芯片香港集成:技术突破与产业机遇全景分析
人工智能·3d
国科安芯5 小时前
抗辐照芯片在低轨卫星星座CAN总线通讯及供电系统的应用探讨
运维·网络·人工智能·单片机·自动化
AKAMAI5 小时前
利用DataStream和TrafficPeak实现大数据可观察性
人工智能·云原生·云计算
Ai墨芯1115 小时前
深度学习水论文:特征提取
人工智能·深度学习
无名工程师5 小时前
神经网络知识讨论
人工智能·神经网络
nbsaas-boot5 小时前
AI时代,我们更需要自己的开发方式与平台
人工智能
SHIPKING3935 小时前
【机器学习&深度学习】LLamaFactory微调效果与vllm部署效果不一致如何解决
人工智能·深度学习·机器学习
闻道且行之6 小时前
Windows|CUDA和cuDNN下载和安装,默认安装在C盘和不安装在C盘的两种方法
windows·深度学习·cuda·cudnn
jonyleek7 小时前
如何搭建一套安全的,企业级本地AI专属知识库系统?从安装系统到构建知识体系,全流程!
人工智能·安全