浅谈常见的分布式ID生成方案

一、UUID

UUID是通用唯一标识码的缩写,其目的是让分布式系统中的所有元素都有唯一的辨识信息,而不需要通过中央控制器来指定唯一标识。

优点:

(1)降低全局节点的压力,使得主键生成速度更快;

(2)生成的主键全局唯一;

(3)跨服务器合并数据方便。

缺点:

(1)UUID占用16个字符,空间占用较多;

(2)不是递增有序的数字,数据写入IO随机性很大,且索引效率下降。

二、数据库主键自增

MySQL数据库设置主键且主键自动增长。

优点:

(1)INT和BIGINT类型占用空间较小;

(2)主键自动增长,IO写入连续性好;

(3)数字类型查询速度优于字符串。

缺点:

(1)并发性能不高,受限于数据库性能;

(2)分库分表,需要改造,复杂;

(3)自增-数据和数据量泄露。

三、Redis自增ID

Redis计数器,原子性自增。

优点: 使用内存,并发性能好 。

缺点:

(1)数据丢失;

(2)自增-数据量泄露。

四、雪花算法

大名鼎鼎的雪花算法,分布式ID的经典解决方案。雪花算法生成的ID组成如下所示:

(1)符号位,占用1位。

(2)时间戳,占用41位,可以支持69年的时间跨度。

(3)机器ID,占用10位。

(4)序列号,占用12位。一毫秒可以生成4095个ID。

优点:

(1)不依赖外部组件;

(2)性能好。

缺点: 时钟回拨。

相关推荐
Data跳动37 分钟前
Spark内存都消耗在哪里了?
大数据·分布式·spark
Java程序之猿2 小时前
微服务分布式(一、项目初始化)
分布式·微服务·架构
来一杯龙舌兰3 小时前
【RabbitMQ】RabbitMQ保证消息不丢失的N种策略的思想总结
分布式·rabbitmq·ruby·持久化·ack·消息确认
节点。csn4 小时前
Hadoop yarn安装
大数据·hadoop·分布式
NiNg_1_2346 小时前
基于Hadoop的数据清洗
大数据·hadoop·分布式
隔着天花板看星星7 小时前
Spark-Streaming集成Kafka
大数据·分布式·中间件·spark·kafka
技术路上的苦行僧11 小时前
分布式专题(8)之MongoDB存储原理&多文档事务详解
数据库·分布式·mongodb
龙哥·三年风水11 小时前
workman服务端开发模式-应用开发-后端api推送修改二
分布式·gateway·php
小小工匠12 小时前
分布式协同 - 分布式事务_2PC & 3PC解决方案
分布式·分布式事务·2pc·3pc
闯闯的日常分享14 小时前
分布式锁的原理分析
分布式