浅谈常见的分布式ID生成方案

一、UUID

UUID是通用唯一标识码的缩写,其目的是让分布式系统中的所有元素都有唯一的辨识信息,而不需要通过中央控制器来指定唯一标识。

优点:

(1)降低全局节点的压力,使得主键生成速度更快;

(2)生成的主键全局唯一;

(3)跨服务器合并数据方便。

缺点:

(1)UUID占用16个字符,空间占用较多;

(2)不是递增有序的数字,数据写入IO随机性很大,且索引效率下降。

二、数据库主键自增

MySQL数据库设置主键且主键自动增长。

优点:

(1)INT和BIGINT类型占用空间较小;

(2)主键自动增长,IO写入连续性好;

(3)数字类型查询速度优于字符串。

缺点:

(1)并发性能不高,受限于数据库性能;

(2)分库分表,需要改造,复杂;

(3)自增-数据和数据量泄露。

三、Redis自增ID

Redis计数器,原子性自增。

优点: 使用内存,并发性能好 。

缺点:

(1)数据丢失;

(2)自增-数据量泄露。

四、雪花算法

大名鼎鼎的雪花算法,分布式ID的经典解决方案。雪花算法生成的ID组成如下所示:

(1)符号位,占用1位。

(2)时间戳,占用41位,可以支持69年的时间跨度。

(3)机器ID,占用10位。

(4)序列号,占用12位。一毫秒可以生成4095个ID。

优点:

(1)不依赖外部组件;

(2)性能好。

缺点: 时钟回拨。

相关推荐
子非衣15 小时前
CenOS7安装RabbitMQ(含延迟队列插件)
分布式·rabbitmq·ruby
linweidong15 小时前
中科曙光Java后端开发面试题及参考答案
分布式·设计模式·spring mvc·tcp协议·三次握手·后端开发·java面经
rustfs16 小时前
使用 RustFS和 Arq,打造 PC 数据安全备份之道
分布式·docker·云原生·rust·开源
后季暖16 小时前
kafka原理详解
分布式·kafka
回家路上绕了弯17 小时前
Seata分布式事务实战指南:从原理到微服务落地
分布式·后端
LDG_AGI17 小时前
【机器学习】深度学习推荐系统(二十六):X 推荐算法多模型融合机制详解
人工智能·分布式·深度学习·算法·机器学习·推荐算法
利刃大大17 小时前
【RabbitMQ】重试机制 && TTL && 死信队列
分布式·后端·消息队列·rabbitmq·队列
talle202117 小时前
Hadoop分布式资源管理框架【Yarn】
大数据·hadoop·分布式
LDG_AGI18 小时前
【机器学习】深度学习推荐系统(二十五): X 推荐算法特征系统详解:230+ 特征全解析
人工智能·分布式·深度学习·算法·机器学习·推荐算法
LDG_AGI18 小时前
【机器学习】深度学习推荐系统(二十八):X 推荐算法listwiseRescoring(同刷多样性降权)机制详解
人工智能·分布式·深度学习·算法·机器学习·推荐算法