论文笔记:GEO-BLEU: Similarity Measure for Geospatial Sequences

22 sigspatial

1 intro

  • 提出了一种空间轨迹相似性度量的方法
  • 比较了两种传统相似度度量的不足
    • DTW
      • 基本特征是它完全对齐序列以进行测量,而不考虑它们之间共享的局部特征
      • 这适用于完全对齐的序列,但不适用于逐步对齐没有太多意义的序列
    • BLEU
      • 适用于不完全对齐的序列
      • 将序列中的地点视为单词,它们的连续组合视为地理空间𝑛-gram,应用这种方法基于局部特征评估地理空间轨迹的相似性
      • 然而,它也有另一个缺点:地理空间 𝑛-grams 需要完全相同才能被视为"匹配",而非常接近但稍有偏移的不会对结果产生贡献。
        • 换句话说,空间接近性是相似性的一个潜在重要属性,在使用BLEU时未被考虑

------>论文基于 BLEU,提出了GEO-BLEU

2 GEO-BLEU

  • 首先,引入地理空间 n-gram 的概念
    • 将序列中的地点视为点,通过相似度得分 s(gi,gj)衡量两点的接近程度。
    • 通过衡量点之间的欧几里得距离 d(gk,wk)并将其标准化来实现
        • 其中 d(⋅,⋅)是两个位置之间的欧几里得距离,而 β是一个系数,用于调整比例
        • 两个 n-gram 完全匹配时,相似度变为最高(即距离为零时)
        • 随着两个 n-gram 之间的距离增加,相似度趋于零
  • 接下来,我们考虑如何在候选序列和参考序列中匹配 n-gram
    • 在BLEU中,匹配是通过 Count_matched(n-gram) 来进行的
      • 如果相同的 n-gram 在参考句子中"未使用",就给出1,并从后续匹配的池中消除那个"已使用"的n-gram 实例,否则给出0
    • 对于融入邻近性概念的GEO-BLEU,让候选序列中的一个 n-gram 与参考序列中最近的未使用的 n-gram 形成一对
    • 贪婪地优化这样的配对集,使得相似度分数之和接近最大值
  • 假设优化后的配对集为 P={(gc1,gr1),...,(gcL,grL)}
    • L 是候选序列和参考序列长度中较短的一个,gck 是候选序列中的 n-gram,grk 是参考序列中的
    • 定义基于 n-gram 的相似度 qn如下
      • 匹配的这些n-gram之间的欧氏距离
  • ------>按照BLEU中提出的惩罚得分,提出的相似性度量 GEO-BLEU 定义为:

2.1 特性

  • 为了展示 GEO-BLEU 的特性以及它与 DTW 的不同,我们应用这两种方法评估两个简单序列,这些序列在几乎完全对齐的情况下具有半径为 10 公里的圆上的点
    *
    • 原始序列经过几何变换(如顺时针和逆时针旋转、缩放等),然后计算两个序列之间的得分。
    • 在大多数情况下,GEO-BLEU 能够提供高度相似性得分【因为重叠的n-gram很多】,而在参考序列和候选序列有明显的几何差异时,DTW 提供了较低的得分
相关推荐
川川子溢6 小时前
【论文阅读】MEDDINOV3:如何调整视觉基础模型用于医学图像分割?
论文阅读
Xy-unu12 小时前
[VL|RIS] RSRefSeg 2
论文阅读·人工智能·transformer·论文笔记·分割
张较瘦_14 小时前
[论文阅读] 告别“数量为王”:双轨道会议模型+LS,破解AI时代学术交流困局
论文阅读·人工智能
贝塔实验室17 小时前
两种常用的抗单粒子翻转动态刷新方法
论文阅读·经验分享·笔记·科技·学习·程序人生·fpga开发
byzy1 天前
【论文笔记】RadarOcc: Robust 3D Occupancy Prediction with 4D Imaging Radar
论文阅读·深度学习·自动驾驶
zstar-_1 天前
【论文阅读】小模型是智能体的未来
论文阅读
无妄无望1 天前
目标计数论文阅读(1)Class-Agnostic Counting
论文阅读·计算机视觉
飞机火车巴雷特1 天前
【论文阅读】Uncertainty Modeling for Out-of-Distribution Generalization (ICLR 2022)
论文阅读·深度学习·不确定性建模
shizidushu1 天前
Graph RAG论文阅读笔记
论文阅读·笔记·graphrag
wzx_Eleven1 天前
【论文阅读】Towards Privacy-Enhanced and Robust Clustered Federated Learning
论文阅读·人工智能·算法·机器学习·支持向量机·网络安全