计算方法——插值法程序实现(一)

例题

给出的函数关系表,分别利用线性插值及二次插值计算的近似值。

|-----------------------------------|----------|----------|----------|----------|----------|
| | 0.1 | 0.2 | 0.3 | 0.4 | 0.5 |
| | 1.105171 | 1.221403 | 1.349859 | 1.491825 | 1.648721 |

参考代码一:Python代码实现(自编码)

python 复制代码
import math
"""
:parameter用于计算插值多项式的系数
"""
def Parameters(data_x,data_y,size):
    parameters=[]
    i = 0
    while i<size:
        j = 0
        temp = 1
        while j<size:
            if i!=j:
                temp*=data_x[i]-data_x[j];
            j += 1
        parameters.append(data_y[i]/temp);
        i += 1
    return parameters
"""
:Calculate用于计算拉格朗日插值公式计算后的值
"""
def Calculate(data_x,parameters,x):
    return_value = 0;
    i = 0
    while i < len(parameters):
        temp = 1
        j = 0
        while j<len(parameters):
            if i!=j:
                temp*=x-data_x[j];
            j+=1
        return_value+=temp*parameters[i]
        i+=1
    return return_value

x1 = [0.2,0.3];
y1 = [1.221403,1.349859];
p1 = Parameters(x1,y1,len(x1));
target_point = 0.27;
real_value = math.exp(target_point);
fit_value = Calculate(x1,p1,target_point)
remainder = real_value-fit_value
print("===============线性拉格朗日插值==================");
print(f"点{target_point}处的真实值为{real_value}")
print(f"点{target_point}处的拟合值为{fit_value}")
print(f'拉格朗日插值余项为{remainder}');
print("===============二次拉格朗日插值==================");
x2 = [0.2,0.3,0.4];
y2 = [1.221403,1.349859,1.491825];
p2 = Parameters(x2,y2,len(x2))
fit_value_2 = Calculate(x2,p2,target_point)
remainder2 = real_value-fit_value_2
print(f"点{target_point}处的拟合值为{fit_value_2}");
print(f'拉格朗日插值余项为{remainder2}');

Python编码计算结果

参考代码二:MATLAB代码实现(自编码)

Matlab 复制代码
%可运行部分代码
clc,clear
format long
x1=[0.2,0.3];
y1=[1.221403,1.349859];
p1=Parameters(x1,y1,length(x1));
point=0.27;
real = exp(point);
disp('点0.27处的真实值为');
disp(real);
fitted1 = Calculate(x1,p1,point);
Remainder1 = real-fitted1;
disp('点0.27处的线性拉格朗日插值结果为');
disp(fitted1);
disp('点0.27处的线性拉格朗日插值余项为');
disp(Remainder1);
x2 = [0.2,0.3,0.4];
y2 = [1.221403,1.349859,1.491825];
p2 = Parameters(x2,y2,length(x2));
fitted2 = Calculate(x2,p2,point);
Remainder2 = fitted2-real;
disp('点0.27处的二次拉格朗日插值结果为');
disp(fitted2);
disp('点0.27处的二次拉格朗日插值余项为');
disp(Remainder2);
format short

Parameters函数

Parameter用于计算插值多项式的系数

Matlab 复制代码
function parameters = Parameters(data_x,data_y,size)
parameters=[];
i=1;
while i<=size
    j=1;
    temp=1;
    while j<=size
        if i ~= j
            temp=(temp*(data_x(i)-data_x(j)));
        end
        % disp(temp);
        j=j+1;
    end
    parameters=[parameters,data_y(i)/temp];
    % disp(parameters);
    i=i+1;
end

Calculate函数

Calculate用于计算拉格朗日插值公式计算后的值

Matlab 复制代码
function return_value = Calculate(data_x,parametres,x)
return_value=0;
i=1;
while i<=length(parametres)
    temp=1;
    j=1;
    while j<=length(parametres)
        if i~=j
            temp = temp*(x-data_x(j));
        end
        j=j+1;
    end
    return_value = return_value+temp*parametres(i);
    i = i+1;
end

MATLAB编码计算结果

参考书目

1\] 李新栋,许文文,张绪浩,任永强. 基于Python的计算方法\[M\]. 北京:电子工业出版社,2023.

相关推荐
虫无涯8 分钟前
LangSmith:大模型应用开发的得力助手
人工智能·langchain·llm
算家计算21 分钟前
DeepSeek-R1论文登《自然》封面!首次披露更多训练细节
人工智能·资讯·deepseek
weiwenhao1 小时前
关于 nature 编程语言
人工智能·后端·开源
神经星星1 小时前
训练成本29.4万美元,DeepSeek-R1登Nature封面,首个通过权威期刊同行评审的主流大模型获好评
人工智能
神州问学1 小时前
【AI洞察】别再只想着“让AI听你话”,人类也需要学习“适应AI”!
人工智能
CoovallyAIHub1 小时前
中科大DSAI Lab团队多篇论文入选ICCV 2025,推动三维视觉与泛化感知技术突破
深度学习·算法·计算机视觉
DevUI团队1 小时前
🚀 MateChat V1.8.0 震撼发布!对话卡片可视化升级,对话体验全面进化~
前端·vue.js·人工智能
聚客AI1 小时前
🎉7.6倍训练加速与24倍吞吐提升:两项核心技术背后的大模型推理优化全景图
人工智能·llm·掘金·日新计划
黎燃2 小时前
当 YOLO 遇见编剧:用自然语言生成技术把“目标检测”写成“目标剧情”
人工智能
算家计算2 小时前
AI教母李飞飞团队发布最新空间智能模型!一张图生成无限3D世界,元宇宙越来越近了
人工智能·资讯