Alphapose训练自己数据集指南

代码下载

复制代码
git clone https://github.com/MVIG-SJTU/AlphaPose.git

数据集格式

数据集格式最好使用COCO数据集格式,如果你的当前不是COCO格式的话,可以参考COCO的说明将数据集格式进行修改,网站如下

https://cocodataset.org/#home

运行之前自行编写脚本将自己的数据集转换成COCO格式

更换权重

alphapose默认使用的是yolov3模型作为其检测器,但是这个检测器只能检测人体目标姿态,所以如果你的检测目标不是人的话还需要单独训练一个yolov3或者yolox的权重替换原有的权重,否则alphapose是没办法用的.将训练好的权重放入对应位置detector/yolo/data

https://github.com/MVIG-SJTU/AlphaPose/blob/master/docs/INSTALL.md 中的Models找到你需要使用的权重并下载

配置

配置文件 这里这个例子

复制代码
DATASET:
  TRAIN:
    TYPE: 'ConcatDataset'
    SET_LIST:
      - TYPE: 'Mscoco'
        MASK_ID: 0
        ROOT: '/media/disk2/yzy/data_set/all_dataset_yzy_wzh/alphapose_data' # 根路径
        IMG_PREFIX: 'images'  #图像文件夹名称
        ANN: 'annotations/train.json'  #标注文件
        AUG:
          FLIP: true
          ROT_FACTOR: 40
          SCALE_FACTOR: 0.3
          NUM_JOINTS_HALF_BODY: 8
          PROB_HALF_BODY: -1
  VAL:
    TYPE: 'Mscoco'
    ROOT: '/media/disk2/yzy/data_set/all_dataset_yzy_wzh/alphapose_data'
    IMG_PREFIX: 'images'
    ANN: 'annotations/val.json'
  TEST:
    TYPE: 'Mscoco_det'
    ROOT: '/media/disk2/yzy/data_set/all_dataset_yzy_wzh/alphapose_data'
    IMG_PREFIX: 'images'
    DET_FILE: './exp/json/test_det_yolo.json'
    ANN: 'annotations/test.json'
DATA_PRESET:
  TYPE: 'simple'
  SIGMA: 2
  NUM_JOINTS: 33
  IMAGE_SIZE:
  - 256
  - 192
  HEATMAP_SIZE:
  - 64
  - 48
MODEL:
  TYPE: 'FastPose'
  PRETRAINED: ''
  TRY_LOAD: ''
  NUM_DECONV_FILTERS:
  - 256
  - 256
  - 256
  NUM_LAYERS: 50
LOSS:
  TYPE: 'MSELoss'
DETECTOR:
  NAME: 'yolo'
  # CONFIG: 'detector/yolo/cfg/yolov3-spp.cfg'
  # WEIGHTS: 'detector/yolo/data/yolov3-spp.weights'
  CONFIG: '/media/disk2/yzy/behavior_framework/AlphaPose-master/detector/yolo/cfg/yolov3-spp.cfg'
  WEIGHTS: '/media/disk2/yzy/behavior_framework/AlphaPose-master/detector/yolo/data/yolov3-spp.weights'
  NMS_THRES: 0.6
  CONFIDENCE: 0.05
TRAIN:
  WORLD_SIZE: 4
  BATCH_SIZE: 32
  BEGIN_EPOCH: 0
  END_EPOCH: 200
  OPTIMIZER: 'adam'
  LR: 0.001
  LR_FACTOR: 0.1
  LR_STEP:
  - 90
  - 120
  DPG_MILESTONE: 140
  DPG_STEP:
  - 160
  - 190

做好这些准备后 还需要校验coco的校验文件

COCO数据格式的校验文件在:AlphaPose-master/alphapose/datasets/mscoco.py

找到这个文件,

修改这部分内容

复制代码
CLASSES = ['pig']
   EVAL_JOINTS = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13]
   num_joints = 14
   joint_pairs = [[0,1],[4,10],[10,11],[1,2],[3,4],[4,12],[12,13],[2,3],[6,7],[4,5],[8,9],[2,6],[2,7]]

这样通过coco的校验之后 就可以成功训练起模型了

相关推荐
初级炼丹师(爱说实话版)40 分钟前
PGLRNet论文笔记
人工智能·深度学习·计算机视觉
川石课堂软件测试40 分钟前
全链路Controller压测负载均衡
android·运维·开发语言·python·mysql·adb·负载均衡
明月照山海-40 分钟前
机器学习周报十七
人工智能·机器学习
喜欢吃豆1 小时前
微调高级推理大模型(COT)的综合指南:从理论到实践
人工智能·python·语言模型·大模型·微调·强化学习·推理模型
喜欢吃豆1 小时前
从指令遵循到价值对齐:医疗大语言模型的进阶优化、对齐与工具集成综合技术白皮书
人工智能·python·语言模型·自然语言处理·大模型·强化学习·constitutional
Access开发易登软件2 小时前
Access调用Azure翻译:轻松实现系统多语言切换
后端·python·低代码·flask·vba·access·access开发
yumgpkpm2 小时前
CMP (类Cloudera) CDP7.3(400次编译)在华为鲲鹏Aarch64(ARM)信创环境中的性能测试过程及命令
大数据·hive·hadoop·python·elasticsearch·spark·cloudera
代码小菜鸡6662 小时前
java 常用的一些数据结构
java·数据结构·python
Dave.B2 小时前
vtkImageThreshold 图像阈值处理指南:从基础到实战优化
图像处理·人工智能·计算机视觉
my烂笔头3 小时前
计算机视觉 图像分类 → 目标检测 → 实例分割
目标检测·计算机视觉·分类