Alphapose训练自己数据集指南

代码下载

复制代码
git clone https://github.com/MVIG-SJTU/AlphaPose.git

数据集格式

数据集格式最好使用COCO数据集格式,如果你的当前不是COCO格式的话,可以参考COCO的说明将数据集格式进行修改,网站如下

https://cocodataset.org/#home

运行之前自行编写脚本将自己的数据集转换成COCO格式

更换权重

alphapose默认使用的是yolov3模型作为其检测器,但是这个检测器只能检测人体目标姿态,所以如果你的检测目标不是人的话还需要单独训练一个yolov3或者yolox的权重替换原有的权重,否则alphapose是没办法用的.将训练好的权重放入对应位置detector/yolo/data

https://github.com/MVIG-SJTU/AlphaPose/blob/master/docs/INSTALL.md 中的Models找到你需要使用的权重并下载

配置

配置文件 这里这个例子

复制代码
DATASET:
  TRAIN:
    TYPE: 'ConcatDataset'
    SET_LIST:
      - TYPE: 'Mscoco'
        MASK_ID: 0
        ROOT: '/media/disk2/yzy/data_set/all_dataset_yzy_wzh/alphapose_data' # 根路径
        IMG_PREFIX: 'images'  #图像文件夹名称
        ANN: 'annotations/train.json'  #标注文件
        AUG:
          FLIP: true
          ROT_FACTOR: 40
          SCALE_FACTOR: 0.3
          NUM_JOINTS_HALF_BODY: 8
          PROB_HALF_BODY: -1
  VAL:
    TYPE: 'Mscoco'
    ROOT: '/media/disk2/yzy/data_set/all_dataset_yzy_wzh/alphapose_data'
    IMG_PREFIX: 'images'
    ANN: 'annotations/val.json'
  TEST:
    TYPE: 'Mscoco_det'
    ROOT: '/media/disk2/yzy/data_set/all_dataset_yzy_wzh/alphapose_data'
    IMG_PREFIX: 'images'
    DET_FILE: './exp/json/test_det_yolo.json'
    ANN: 'annotations/test.json'
DATA_PRESET:
  TYPE: 'simple'
  SIGMA: 2
  NUM_JOINTS: 33
  IMAGE_SIZE:
  - 256
  - 192
  HEATMAP_SIZE:
  - 64
  - 48
MODEL:
  TYPE: 'FastPose'
  PRETRAINED: ''
  TRY_LOAD: ''
  NUM_DECONV_FILTERS:
  - 256
  - 256
  - 256
  NUM_LAYERS: 50
LOSS:
  TYPE: 'MSELoss'
DETECTOR:
  NAME: 'yolo'
  # CONFIG: 'detector/yolo/cfg/yolov3-spp.cfg'
  # WEIGHTS: 'detector/yolo/data/yolov3-spp.weights'
  CONFIG: '/media/disk2/yzy/behavior_framework/AlphaPose-master/detector/yolo/cfg/yolov3-spp.cfg'
  WEIGHTS: '/media/disk2/yzy/behavior_framework/AlphaPose-master/detector/yolo/data/yolov3-spp.weights'
  NMS_THRES: 0.6
  CONFIDENCE: 0.05
TRAIN:
  WORLD_SIZE: 4
  BATCH_SIZE: 32
  BEGIN_EPOCH: 0
  END_EPOCH: 200
  OPTIMIZER: 'adam'
  LR: 0.001
  LR_FACTOR: 0.1
  LR_STEP:
  - 90
  - 120
  DPG_MILESTONE: 140
  DPG_STEP:
  - 160
  - 190

做好这些准备后 还需要校验coco的校验文件

COCO数据格式的校验文件在:AlphaPose-master/alphapose/datasets/mscoco.py

找到这个文件,

修改这部分内容

复制代码
CLASSES = ['pig']
   EVAL_JOINTS = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13]
   num_joints = 14
   joint_pairs = [[0,1],[4,10],[10,11],[1,2],[3,4],[4,12],[12,13],[2,3],[6,7],[4,5],[8,9],[2,6],[2,7]]

这样通过coco的校验之后 就可以成功训练起模型了

相关推荐
chao_78917 分钟前
二分查找篇——寻找旋转排序数组中的最小值【LeetCode】
python·线性代数·算法·leetcode·矩阵
金玉满堂@bj33 分钟前
PyCharm 中 Python 解释器的添加选项及作用
ide·python·pycharm
程序员三藏38 分钟前
如何使用Pytest进行测试?
自动化测试·软件测试·python·测试工具·职场和发展·测试用例·pytest
随心点儿1 小时前
使用python 将多个docx文件合并为一个word
开发语言·python·多个word合并为一个
不学无术の码农1 小时前
《Effective Python》第十三章 测试与调试——使用 Mock 测试具有复杂依赖的代码
开发语言·python
sleepybear11131 小时前
在Ubuntu上从零开始编译并运行Home Assistant源码并集成HACS与小米开源的Ha Xiaomi Home
python·智能家居·小米·home assistant·米家·ha xiaomi home
纪伊路上盛名在1 小时前
(鱼书)深度学习入门1:python入门
人工智能·python·深度学习
夏末蝉未鸣012 小时前
python transformers笔记(TrainingArguments类)
python·自然语言处理·transformer
德育处主任Pro2 小时前
「py数据分析」04如何将 Python 爬取的数据保存为 CSV 文件
数据库·python·数据分析
咸鱼鲸2 小时前
【PyTorch】PyTorch中数据准备工作(AI生成)
人工智能·pytorch·python