论文笔记: Boosting Object Detection with Zero-Shot Day-Night Domain Adaptation

文章目录

Boosting Object Detection with Zero-Shot Day-Night Domain Adaptation

论文链接: https://openaccess.thecvf.com/content/CVPR2024/html/Du_Boosting_Object_Detection_with_Zero-Shot_Day-Night_Domain_Adaptation_CVPR_2024_paper.html

代码链接: https://github.com/ZPDu/DAI-Net

论文中的知识补充

主要包含没有了解的论文中提到的知识(相关工作/知识盲区)

Retinex

Retinex是一种常用的建立在科学实验室和科学分析基础上的图像增强方法。Retinex理论的基础理论是物体的颜色是由物体对长波(红色)、中波(绿色)、短波(蓝色)光线的反射决定的,而不是由反射光强度的绝对值来决定的,物体的色彩不受光照非均匀性的影响,即具有一致性,即Retinex是以色感一致性为基础的。

动机

现状

  • 在弱光场景下检测物体是一个持久的挑战,因为在强光数据上训练的检测器在弱光上表现出显著的性能下降,这是由于能见度造成的。
  • 以前的方法通过探索图像增强或使用真实弱光图像数据集的目标检测技术来缓解这个问题。

问题

  • 收集和标注弱光图像的固有困难阻碍了进展。

贡献

  • 利用zero-shot昼夜域自适应来增强弱光目标检测,旨在将检测器从强光场景推广到弱光场景,而无需真实的弱光数据。
  • 设计了一个反射率表示学习模块,以学习模块基于Retinex的图像照明不变性,并采用精心设计的照明不变性强化策略。
  • 引入了交互式重分解一致性过程来改进原始Retinex图像分解过程,方法是执行两次连续的图像分别并引入重分解一致性损失。

方法

  • 利用一个受物理启发的低照度合成管道来生成合成的低光图像,并与原始良好照明图像形成配对。
  • 重新审视了低级视觉中的Retinex理论用于高级检测任务,通过将低光图像分解为域不变和域特定信息,其中只有前者应保留以学习可泛化的检测器。因此在已建立的目标检测管道的基础上构建了DAI-Net。
  • 提出了一种反射率表示学习模块作为额外的解码器。此模块从良好照明图像和合成低光图像中解码与反射率相关的照度不变信息。它通过预先训练的Retinex分解网络产生的伪真实值进行优化,并通过专门设计的照度不变强化策略进行强化。
  • 设计了一种交换-重分解-一致性程序来改进基于Retinex的图像分解过程。它通过交换分解后的良好照明/低光反射率来重建图像,然后重新分解它们,依次执行两次图像分解。引入了重分解一致性损失,以促进两次分解中产生的反射率之间的一致性,从而学习到的反射率表示稳定且准确。

模型结构:

相关推荐
人工智能培训1 小时前
深度学习—卷积神经网络(4)
人工智能·深度学习·神经网络·机器学习·cnn·dnn
学习3人组2 小时前
目标检测模型选型+训练调参极简步骤清单
人工智能·目标检测·决策树
Yeats_Liao2 小时前
MindSpore开发之路(十七):静态图 vs. 动态图:掌握MindSpore的两种执行模式
人工智能·深度学习·机器学习
Techblog of HaoWANG2 小时前
目标检测与跟踪 (7)- YOLOv8 ONNX量化模型部署指南
yolo·目标检测·onnx·量化部署
墨绿色的摆渡人2 小时前
论文笔记(一百一十七)WorldVLA Towards Autoregressive Action World Model Model
论文阅读
宁大小白3 小时前
pythonstudy Day45
开发语言·python·深度学习
奔袭的算法工程师3 小时前
论文解读--FocalFormer3D : Focusing on Hard Instance for 3D Object Detection
人工智能·目标检测·计算机视觉
Sui_Network3 小时前
Sui 2025→2026 直播回顾中文版
大数据·前端·人工智能·深度学习·区块链
高洁014 小时前
深度学习—卷积神经网络(3)
人工智能·深度学习·机器学习·transformer·知识图谱
人工智能培训4 小时前
深度学习—卷积神经网络(3)
人工智能·深度学习·神经网络·机器学习·cnn·智能体