论文笔记: Boosting Object Detection with Zero-Shot Day-Night Domain Adaptation

文章目录

Boosting Object Detection with Zero-Shot Day-Night Domain Adaptation

论文链接: https://openaccess.thecvf.com/content/CVPR2024/html/Du_Boosting_Object_Detection_with_Zero-Shot_Day-Night_Domain_Adaptation_CVPR_2024_paper.html

代码链接: https://github.com/ZPDu/DAI-Net

论文中的知识补充

主要包含没有了解的论文中提到的知识(相关工作/知识盲区)

Retinex

Retinex是一种常用的建立在科学实验室和科学分析基础上的图像增强方法。Retinex理论的基础理论是物体的颜色是由物体对长波(红色)、中波(绿色)、短波(蓝色)光线的反射决定的,而不是由反射光强度的绝对值来决定的,物体的色彩不受光照非均匀性的影响,即具有一致性,即Retinex是以色感一致性为基础的。

动机

现状

  • 在弱光场景下检测物体是一个持久的挑战,因为在强光数据上训练的检测器在弱光上表现出显著的性能下降,这是由于能见度造成的。
  • 以前的方法通过探索图像增强或使用真实弱光图像数据集的目标检测技术来缓解这个问题。

问题

  • 收集和标注弱光图像的固有困难阻碍了进展。

贡献

  • 利用zero-shot昼夜域自适应来增强弱光目标检测,旨在将检测器从强光场景推广到弱光场景,而无需真实的弱光数据。
  • 设计了一个反射率表示学习模块,以学习模块基于Retinex的图像照明不变性,并采用精心设计的照明不变性强化策略。
  • 引入了交互式重分解一致性过程来改进原始Retinex图像分解过程,方法是执行两次连续的图像分别并引入重分解一致性损失。

方法

  • 利用一个受物理启发的低照度合成管道来生成合成的低光图像,并与原始良好照明图像形成配对。
  • 重新审视了低级视觉中的Retinex理论用于高级检测任务,通过将低光图像分解为域不变和域特定信息,其中只有前者应保留以学习可泛化的检测器。因此在已建立的目标检测管道的基础上构建了DAI-Net。
  • 提出了一种反射率表示学习模块作为额外的解码器。此模块从良好照明图像和合成低光图像中解码与反射率相关的照度不变信息。它通过预先训练的Retinex分解网络产生的伪真实值进行优化,并通过专门设计的照度不变强化策略进行强化。
  • 设计了一种交换-重分解-一致性程序来改进基于Retinex的图像分解过程。它通过交换分解后的良好照明/低光反射率来重建图像,然后重新分解它们,依次执行两次图像分解。引入了重分解一致性损失,以促进两次分解中产生的反射率之间的一致性,从而学习到的反射率表示稳定且准确。

模型结构:

相关推荐
csdn_life182 小时前
训练式推理:算力通缩时代下下一代AI部署范式的创新与落地
人工智能·深度学习·机器学习
Coding茶水间2 小时前
基于深度学习的猪识别系统演示与介绍(YOLOv12/v11/v8/v5模型+Pyqt5界面+训练代码+数据集)
图像处理·人工智能·python·深度学习·yolo·目标检测
Sunhen_Qiletian3 小时前
深度学习之模型的部署、web框架 服务端及客户端案例
人工智能·深度学习
LaughingZhu4 小时前
Product Hunt 每日热榜 | 2026-02-15
人工智能·经验分享·深度学习·神经网络·产品运营
AI浩5 小时前
EFSI-DETR:用于无人机图像实时小目标检测的高效频域 - 语义集成方法
人工智能·目标检测·无人机
cyforkk5 小时前
YAML 配置文件中的常见陷阱:内联字典与块映射混用
人工智能·深度学习·机器学习
YMWM_6 小时前
论文阅读“DM0: An Embodied-Native Vision-Language-Action Model towards Physical AI“
论文阅读·人工智能·vla
月光有害6 小时前
深入解析批归一化 (Batch Normalization): 稳定并加速深度学习的基石
开发语言·深度学习·batch
Suryxin.7 小时前
从0开始复现nano-vllm「llm_engine.py」
人工智能·python·深度学习·ai·vllm
冰西瓜6008 小时前
深度学习的数学原理(九)—— 神经网络为什么能学习特征?
深度学习·神经网络·学习