LLM 模型压缩之三: FoldGPT

0. 资源链接

1. 背景动机

现有的大语言模型推理存在以下问题:

  • LLM 模型因为有大量的参数,以及 next token 的预测方式,导致 LLM 模型推理慢,计算消耗大。

  • 模型压缩,量化和蒸馏等技术用来加速 LLM 模型推理;以及目前有许多端侧 LLM 推理的需求对大模型推理时延很高,需要尽可能降低 LLM 的推理时延,目前的加速技术仍然存在挑战。

  • 目前压缩模型技术主要分析,剪枝模型宽度存在的冗余性,但是模型的finetune 仍然需要消耗较多算力。

  • 目前有一些工作如 ShortGPT 等工作发现 LLM 在深度存在冗余计算,在深度剪枝取得不错的效果。

2. 内容提要

  • 本文分析了LLM blocks 输出的值的相似度,发现在深度维度上存在大量冗余。

  • 本文提出一个叫做 FoldGPT 方法,主要由模块去除和模块共享技术。

  • 本文设计一种可学习的重要度度量来对 LLM block 重要性排序,用于去除不重要模块。

  • 本文通过大量实验验证了 FoldGPT 的有效性,在不少模型上取得 SOTA 压缩效果。

3. 技术细节

FoldGPT 包含4个主要部分:Redundancy analysis,Gated block removal,Grouped parameter sharing 和 Distillation fine-tuning。

3.1 Redundancy analysis

通过分析 block 输入输出的相似度,可以发现不同 model 都存在深度的冗余性。

3.2 Gated block removal

  • 由于之前 ShortGPT BI score 方法忽略模块之间的影响,所以不能找到全局最优的模块去除策略。

  • 本文通过引入学习的门控系数来学习模块之间去除影响重要性。

  • 通过实验对比发现 FoldGPT 效果要远好于 ShortGPT BI score。

3.3 Grouped parameter sharing

  • 通过 group方式,让group 内的block share weights,为了保持精度,增加少量可学习参数来微调模型。

3.4 Distillation fine-tuning

  • 通过 Lora 微调提高精度。

4. 实验结果

  • FoldGPT 效果要好于 ShortGPT,同时通过 finetune 压缩效果会更好。

5. 一些思考

  • FoldGPT 针对 ShortGPT BI score 存在的问题,提出可学习的 Gated block score 来找出 less import blocks。

  • 通过参数共享和微调的技术进一步提高模型推理速度。

相关推荐
zhangrelay1 小时前
如何使用AI快速编程实现标注ROS2中sensor_msgs/msg/Image图像色彩webots2025a
人工智能·笔记·opencv·学习·计算机视觉·机器人视觉
武子康1 小时前
AI研究-120 DeepSeek-OCR 从 0 到 1:上手路线、实战要点
人工智能·深度学习·机器学习·ai·ocr·deepseek·deepseek-ocr
大千AI助手1 小时前
LIFT:基于低秩引导的稀疏微调
人工智能·神经网络·lora·大模型·lift·大千ai助手·稀疏微调
Serverless 社区1 小时前
算力成本降低 33%,与光同尘用 Serverless AI 赋能影视商业内容生产
人工智能·云原生·serverless
L.EscaRC1 小时前
【AI基础篇】Transformer架构深度解析与前沿应用
人工智能·深度学习·transformer
王中阳Go1 小时前
3 - RAG 知识库基础 - AI 超级智能体项目教程
人工智能·agent
司马阅-SmartRead2 小时前
司马阅与数之境科技达成生态战略合作,释放1+1>2的产业赋能价值
人工智能
化作星辰2 小时前
四层神经网络案例(含反向传播)
人工智能·深度学习·神经网络
m0_650108242 小时前
【论文精读】AVID:基于扩散模型的任意长度视频修复
人工智能·扩散模型·论文精读·视频修复·时序一致性·任意时长·结构引导
TYUT_xiaoming2 小时前
ubuntu22.04 GPU环境安装mindspore
linux·人工智能·深度学习