python列表实现矩阵行列转换

本文采用列表嵌套实现矩阵的行列转换。

第一种方法(此方法来源于https://docs.python.org/zh-cn/3/tutorial/datastructures.html#list-comprehensions

复制代码
matrix = [
    [1, 2, 3, 4],    [5, 6, 7, 8],    [9, 10, 11, 12],
]
print(
    [[row[i] for row in matrix] for i in range(4)]
)

第二种方法,使用for循环实现。

初始代码如下:

复制代码
matrix = [
    [1, 2, 3, 4],    [5, 6, 7, 8],    [9, 10, 11, 12],
]
# print(
#     [[row[i] for row in matrix] for i in range(4)]
# )
result = []
result_1 = []
for y in range(len(matrix[0])):
    for x in range(len(matrix)):
        result_1.append(matrix[x][y])
    result_1=list(result_1)
    print('result_1',result_1)
    print('len(result)',len(result))
    result.append(result_1)
    result_1[:]=[]
    print('result',result)

运行程序,发现第一层外循环结束后,result的元素不对(如下

复制代码
result_1 [1, 5, 9]
len(result) 0
result [[]]         #第一层外循环结束后的结果
result_1 [2, 6, 10]
len(result) 1
result [[2, 6, 10], []]
result_1 [3, 7, 11]
len(result) 2
result [[2, 6, 10], [3, 7, 11], []]
result_1 [4, 8, 12]
len(result) 3
result [[2, 6, 10], [3, 7, 11], [4, 8, 12], []]

然后将问题发给CHATGPT4-MINI,得到的结果如下:

按照提示,调整代码。调整滞后的代码如下:

复制代码
result = []
for y in range(len(matrix[0])):
    result_1 = []                  #代码修改点
    for x in range(len(matrix)):
        result_1.append(matrix[x][y])
    result_1=list(result_1)
    print('result_1',result_1)
    print('len(result)',len(result))
    result.append(result_1)
    # result_1[:]=[]              #代码修改点
    print('result',result)

运行结果

输出结果符合预期。

总结:多层循环的时候,一定要注意全局变量和局部变量的赋值、还原。

PS:GPT很强大,可以好好利用它帮助我们提高学习效率。

相关推荐
Hi202402176 小时前
使用 Apollo TransformWrapper 生成相机到各坐标系的变换矩阵
数码相机·线性代数·矩阵·自动驾驶·apollo
塔中妖6 小时前
【华为OD】最大子矩阵和
算法·华为od·矩阵
君名余曰正则14 小时前
机器学习实操项目01——Numpy入门(基本操作、数组形状操作、复制与试图、多种索引技巧、线性代数)
线性代数·机器学习·numpy
点云SLAM14 小时前
四元数 (Quaternion)与李群SE(3)知识点(1)
线性代数·slam·四元数·旋转矩阵·位姿表示·李群se(3)·四元数插值
代码的余温15 小时前
Oracle RAC认证矩阵:规避风险的关键指南
数据库·oracle·矩阵
阿巴Jun1 天前
【数学】线性代数知识点总结
笔记·线性代数·矩阵
沧海一粟青草喂马1 天前
抖音批量上传视频怎么弄?抖音矩阵账号管理的专业指南
大数据·人工智能·矩阵
小麦矩阵系统永久免费1 天前
小麦矩阵系统:让短视频分发实现抖音快手小红书全覆盖
大数据·人工智能·矩阵
scx_link1 天前
数学知识--行向量与矩阵相乘,和矩阵与行向量相乘的区别
线性代数·矩阵
EQUINOX11 天前
矩阵的对称,反对称分解
线性代数·矩阵