python列表实现矩阵行列转换

本文采用列表嵌套实现矩阵的行列转换。

第一种方法(此方法来源于https://docs.python.org/zh-cn/3/tutorial/datastructures.html#list-comprehensions

复制代码
matrix = [
    [1, 2, 3, 4],    [5, 6, 7, 8],    [9, 10, 11, 12],
]
print(
    [[row[i] for row in matrix] for i in range(4)]
)

第二种方法,使用for循环实现。

初始代码如下:

复制代码
matrix = [
    [1, 2, 3, 4],    [5, 6, 7, 8],    [9, 10, 11, 12],
]
# print(
#     [[row[i] for row in matrix] for i in range(4)]
# )
result = []
result_1 = []
for y in range(len(matrix[0])):
    for x in range(len(matrix)):
        result_1.append(matrix[x][y])
    result_1=list(result_1)
    print('result_1',result_1)
    print('len(result)',len(result))
    result.append(result_1)
    result_1[:]=[]
    print('result',result)

运行程序,发现第一层外循环结束后,result的元素不对(如下

复制代码
result_1 [1, 5, 9]
len(result) 0
result [[]]         #第一层外循环结束后的结果
result_1 [2, 6, 10]
len(result) 1
result [[2, 6, 10], []]
result_1 [3, 7, 11]
len(result) 2
result [[2, 6, 10], [3, 7, 11], []]
result_1 [4, 8, 12]
len(result) 3
result [[2, 6, 10], [3, 7, 11], [4, 8, 12], []]

然后将问题发给CHATGPT4-MINI,得到的结果如下:

按照提示,调整代码。调整滞后的代码如下:

复制代码
result = []
for y in range(len(matrix[0])):
    result_1 = []                  #代码修改点
    for x in range(len(matrix)):
        result_1.append(matrix[x][y])
    result_1=list(result_1)
    print('result_1',result_1)
    print('len(result)',len(result))
    result.append(result_1)
    # result_1[:]=[]              #代码修改点
    print('result',result)

运行结果

输出结果符合预期。

总结:多层循环的时候,一定要注意全局变量和局部变量的赋值、还原。

PS:GPT很强大,可以好好利用它帮助我们提高学习效率。

相关推荐
We་ct4 小时前
LeetCode 54. 螺旋矩阵:两种解法吃透顺时针遍历逻辑
前端·算法·leetcode·矩阵·typescript
weisian1519 小时前
进阶篇-7-数学篇-6--向量、矩阵、张量在 AI 中的运算与应用:解锁智能的“计算语法”
人工智能·线性代数·矩阵·向量·ai运算
独自破碎E9 小时前
【前缀和】LCR_013_二维区域和检索-矩阵不可变
线性代数·矩阵
香芋Yu9 小时前
【机器学习教程】第03章:SVD与矩阵分解
笔记·机器学习·矩阵
香芋Yu11 小时前
【机器学习教程】第02章:线性代数基础【上】
笔记·线性代数·机器学习
矢志航天的阿洪1 天前
IGRF-13 数学细节与公式说明
线性代数·机器学习·矩阵
人机与认知实验室1 天前
人机环境系统矩阵的“秩”
线性代数·矩阵
闪电麦坤951 天前
Leecode热题100:矩阵置零(矩阵)
线性代数·算法·矩阵
人机与认知实验室1 天前
人机环境系统矩阵典型案例分析
线性代数·矩阵
山楂树の1 天前
计算机图形学 模型矩阵的逆矩阵:如何从“世界”回归“局部”?
线性代数·矩阵·回归