python列表实现矩阵行列转换

本文采用列表嵌套实现矩阵的行列转换。

第一种方法(此方法来源于https://docs.python.org/zh-cn/3/tutorial/datastructures.html#list-comprehensions

复制代码
matrix = [
    [1, 2, 3, 4],    [5, 6, 7, 8],    [9, 10, 11, 12],
]
print(
    [[row[i] for row in matrix] for i in range(4)]
)

第二种方法,使用for循环实现。

初始代码如下:

复制代码
matrix = [
    [1, 2, 3, 4],    [5, 6, 7, 8],    [9, 10, 11, 12],
]
# print(
#     [[row[i] for row in matrix] for i in range(4)]
# )
result = []
result_1 = []
for y in range(len(matrix[0])):
    for x in range(len(matrix)):
        result_1.append(matrix[x][y])
    result_1=list(result_1)
    print('result_1',result_1)
    print('len(result)',len(result))
    result.append(result_1)
    result_1[:]=[]
    print('result',result)

运行程序,发现第一层外循环结束后,result的元素不对(如下

复制代码
result_1 [1, 5, 9]
len(result) 0
result [[]]         #第一层外循环结束后的结果
result_1 [2, 6, 10]
len(result) 1
result [[2, 6, 10], []]
result_1 [3, 7, 11]
len(result) 2
result [[2, 6, 10], [3, 7, 11], []]
result_1 [4, 8, 12]
len(result) 3
result [[2, 6, 10], [3, 7, 11], [4, 8, 12], []]

然后将问题发给CHATGPT4-MINI,得到的结果如下:

按照提示,调整代码。调整滞后的代码如下:

复制代码
result = []
for y in range(len(matrix[0])):
    result_1 = []                  #代码修改点
    for x in range(len(matrix)):
        result_1.append(matrix[x][y])
    result_1=list(result_1)
    print('result_1',result_1)
    print('len(result)',len(result))
    result.append(result_1)
    # result_1[:]=[]              #代码修改点
    print('result',result)

运行结果

输出结果符合预期。

总结:多层循环的时候,一定要注意全局变量和局部变量的赋值、还原。

PS:GPT很强大,可以好好利用它帮助我们提高学习效率。

相关推荐
峙峙峙11 小时前
线性代数--AI数学基础复习
人工智能·线性代数
我爱C编程13 小时前
基于拓扑结构检测的LDPC稀疏校验矩阵高阶环检测算法matlab仿真
算法·matlab·矩阵·ldpc·环检测
CVer儿15 小时前
svd分解求旋转平移矩阵
线性代数·算法·矩阵
张晓~1833994812120 小时前
数字人分身+矩阵系统聚合+碰一碰发视频: 源码搭建-支持OEM
线性代数·矩阵·音视频
山登绝顶我为峰 3(^v^)31 天前
如何录制带备注的演示文稿(LaTex Beamer + Pympress)
c++·线性代数·算法·计算机·密码学·音视频·latex
微小冷1 天前
二关节机器人系统模型推导
线性代数·机器人·概率论·推导·拉格朗日函数·二关节机器人·机器人控制系统的设计
YuTaoShao2 天前
【LeetCode 热题 100】73. 矩阵置零——(解法二)空间复杂度 O(1)
java·算法·leetcode·矩阵
luofeiju2 天前
使用LU分解求解线性方程组
线性代数·算法
FF-Studio2 天前
【硬核数学 · LLM篇】3.1 Transformer之心:自注意力机制的线性代数解构《从零构建机器学习、深度学习到LLM的数学认知》
人工智能·pytorch·深度学习·线性代数·机器学习·数学建模·transformer
szekl3 天前
HDMI 2.0 4×2矩阵切换器412HN——多信号输入输出的高清解决方案
linux·矩阵·计算机外设·电脑·ekl