Elasticsearch检索原理

Elasticsearch 的检索原理主要基于其内部使用的倒排索引结构,以及诸如BM25等相关性评分算法。

查询解析

当用户提交查询时,Elasticsearch 接收和解析该请求,包括确定查询类型(如MatchBoolTerm等)和相关字段。解析过程涉及以下步骤:

  • 查询解析:Elasticsearch会对查询进行语法和语义分析。
  • 分词处理:对查询中的文本进行分词处理,将其转换为词项,以便于与倒排索引对应的词项进行匹配。

路由查询

一旦解析完查询,Elasticsearch 将确定要访问的分片(shard):

  • 分片确定:根据索引的结构,Elasticsearch确定哪些主分片和副本分片将被查询。
  • 路由请求:将查询请求发送到相应的分片。

执行查询

每个分片都会在其内部执行查询,主要步骤包括:

  • 词项查找:分片在倒排索引中查找与查询中指定的词项匹配的文档ID。

  • 相关性评分计算:对于匹配的文档,使用相关性算法(通常是BM25)进行评分。

  • 聚合计算:如果查询涉及聚合或统计信息,分片也会执行这些计算。

汇总结果

每个分片执行完查询后,会将结果(文档ID及其相关性得分)发送回协调节点(coordinating node)。接下来协调节点将处理这些结果:

  • 结果合并:协调节点将来自不同分片的结果合并成一个统一的结果集,通常按得分排序。

  • 聚合结果整合:如果查询中包含聚合操作,协调节点将合并各分片中的聚合结果。

返回结果

经过汇总和整合后,协调节点将最终的查询结果返回给客户端,包括相关文档及其得分信息。

缓存机制

Elasticsearch 还实现了一些缓存机制以提高效率:

  • 查询缓存:对于重复的查询结果,可以被缓存,以便快速返回。

  • 文档值缓存:用于加速聚合和排序的字段,通过doc values优化文档存取。

相关推荐
杨超越luckly10 分钟前
ArcGIS应用指南:ArcGIS制作局部放大地图
大数据·arcgis·信息可视化·数据挖掘·数据分析
jlting19513 分钟前
Flink——进行数据转换时,报:Recovery is suppressed by NoRestartBackoffTimeStrategy
大数据·flink·kafka
青云交18 分钟前
大数据新视界 -- Hive 数据分区:提升查询效率的关键步骤(下)(8/ 30)
大数据·数据库·精细化管理·hive 数据分区·分区修剪·分区合并·缓存协同
Java 第一深情20 分钟前
Linux上安装单机版Kibana6.8.1
elasticsearch·kibana
大数据编程之光37 分钟前
Flink 之 Window 机制详解(上):基础概念与分类
大数据·flink
Kika写代码1 小时前
【大数据技术基础】 课程 第5章 HBase的安装和基础编程 大数据基础编程、实验和案例教程(第2版)
大数据·数据库·hbase
LeonNo111 小时前
ElasticSearch学习了解笔记
笔记·学习·elasticsearch
iPrologue1 小时前
自己记录docker和ES集群
elasticsearch·docker·容器
Evenurs1 小时前
【git】取消一个已提交的文件或路径的追踪
大数据·git·elasticsearch
猫猫不是喵喵.1 小时前
分布式搜索引擎Elasticsearch(一)
分布式·搜索引擎·微服务