Elasticsearch 中的相关性和得分

在Elasticsearch中,相关性(Relevance)和得分(Score)是搜索引擎技术中非常重要的概念,它们直接影响搜索结果的排序。

相关性(Relevance)

相关性是指搜索结果与用户查询的相关程度。对于用户而言,他们希望搜索结果尽可能与输入的查询意图相关。在Elasticsearch中,相关性是一个动态的概念,依据查询的内容和上下文的不同而变化。

得分(Score)

得分是Elasticsearch用来量化文档与查询相关性的一种机制。得分越高,表示文档与查询条件的相关性越强。Elasticsearch通过计算每个文档的得分来决定搜索结果的排序。

得分计算的方法

Elasticsearch默认使用BM25算法计算得分。BM25是一个基于词频和逆文档频率的算法,考虑了以下几个因素:

  • 词频(TF):在文档中,某个词出现的次数。一个常见的词在某个文档中出现得越多,说明该文档可能与该词更相关。

  • 逆文档频率(IDF):词在整个文档集中的稀有度。出现得少的词通常能提供更有针对性的相关性信息,因此IDF会提高这样的词的得分。

  • 文档长度:短文档通常会比长文档得分高,因为长文档可能包含更多的噪音信息。BM25使用文档长度的均值和标准差来调整得分。

BM25的基本公式如下:

  • TF(t,D):在文档D中词t出现的次数。
  • IDF(t):词t的逆文档频率。
  • ∣D∣:文档D的长度(字数)。
  • avgdl:所有文档的平均长度。
  • b和k1:调节参数,通常设置为 b=0.75和k1=1.2。

调整得分和相关性

在Elasticsearch中,可以通过以下方式调整得分和相关性:

  • 使用权重:在查询中可以为某些字段设置较高的权重,以提高其对结果的重要性。

  • 自定义评分:使用Function Score的查询功能,应用自定义的得分算法调整默认得分。

  • 规范化得分:通过自定义的打分功能,可以根据特定业务逻辑调整文档得分,确保更符合用户的需求。

相关推荐
大任视点2 小时前
科技赋能健康未来,守护生命青春活力
大数据·人工智能·科技
hans汉斯3 小时前
基于改进YOLOv11n的无人机红外目标检测算法
大数据·数据库·人工智能·算法·yolo·目标检测·无人机
励志成为糕手3 小时前
Flume架构深度解析:构建高可用大数据采集系统
大数据·架构·flume·日志·大数据采集
武子康3 小时前
大数据-161 Apache Kylin Cube 实战:建模、构建与查询加速完整指南
大数据·后端·apache kylin
金融小师妹4 小时前
基于机器学习与深度强化学习:非农数据触发AI多因子模型预警!12月降息预期骤降的货币政策预测
大数据·人工智能·深度学习·1024程序员节
q***48415 小时前
SpringBoot整合easy-es
spring boot·后端·elasticsearch
Q26433650235 小时前
【有源码】spark与hadoop-情感挖掘+画像建模的携程酒店评价数据分析可视化系统-基于机器学习的携程酒店评价情感分析与竞争态势可视化
大数据·hadoop·python·机器学习·数据分析·spark·毕业设计
2021_fc7 小时前
Flink批处理实战:使用DataSet API进行高效的批处理
大数据·flink
Dream Algorithm10 小时前
MACD负很多说明什么
大数据