Elasticsearch 中的相关性和得分

在Elasticsearch中,相关性(Relevance)和得分(Score)是搜索引擎技术中非常重要的概念,它们直接影响搜索结果的排序。

相关性(Relevance)

相关性是指搜索结果与用户查询的相关程度。对于用户而言,他们希望搜索结果尽可能与输入的查询意图相关。在Elasticsearch中,相关性是一个动态的概念,依据查询的内容和上下文的不同而变化。

得分(Score)

得分是Elasticsearch用来量化文档与查询相关性的一种机制。得分越高,表示文档与查询条件的相关性越强。Elasticsearch通过计算每个文档的得分来决定搜索结果的排序。

得分计算的方法

Elasticsearch默认使用BM25算法计算得分。BM25是一个基于词频和逆文档频率的算法,考虑了以下几个因素:

  • 词频(TF):在文档中,某个词出现的次数。一个常见的词在某个文档中出现得越多,说明该文档可能与该词更相关。

  • 逆文档频率(IDF):词在整个文档集中的稀有度。出现得少的词通常能提供更有针对性的相关性信息,因此IDF会提高这样的词的得分。

  • 文档长度:短文档通常会比长文档得分高,因为长文档可能包含更多的噪音信息。BM25使用文档长度的均值和标准差来调整得分。

BM25的基本公式如下:

  • TF(t,D):在文档D中词t出现的次数。
  • IDF(t):词t的逆文档频率。
  • ∣D∣:文档D的长度(字数)。
  • avgdl:所有文档的平均长度。
  • b和k1:调节参数,通常设置为 b=0.75和k1=1.2。

调整得分和相关性

在Elasticsearch中,可以通过以下方式调整得分和相关性:

  • 使用权重:在查询中可以为某些字段设置较高的权重,以提高其对结果的重要性。

  • 自定义评分:使用Function Score的查询功能,应用自定义的得分算法调整默认得分。

  • 规范化得分:通过自定义的打分功能,可以根据特定业务逻辑调整文档得分,确保更符合用户的需求。

相关推荐
绿蕉24 分钟前
智能底盘:汽车革命的“新基石”
大数据·人工智能
GAOJ_K25 分钟前
滚珠花键的使用时长与性能保持的量化关系
大数据·人工智能·科技·自动化·制造
EveryPossible38 分钟前
页面学习1
大数据
TDengine (老段)39 分钟前
网络延时对 TDengine TSDB 写入性能的影响:实验解析与实践建议
大数据·数据库·物联网·时序数据库·tdengine·涛思数据
ZKNOW甄知科技2 小时前
AI-ITSM的时代正在到来:深度解读Gartner最新报告
大数据·运维·人工智能·低代码·网络安全·微服务·重构
xinyuan_1234562 小时前
数智化招采平台实战指南:AI如何让采购管理实现效率与价值落地
大数据·人工智能
Tezign_space2 小时前
技术实战:Crocs如何构建AI驱动的智能内容矩阵,实现内容播放量提升470%?
大数据·人工智能·矩阵·aigc·内容运营·多智能体系统·智能内容矩阵
八月瓜科技2 小时前
八月瓜科技参与“数据要素驱动产业升级”活动,分享【数据赋能科技创新全链条】
java·大数据·人工智能·科技·机器人·程序员创富
失伟2 小时前
CDC(数据变更捕获)场景应用
mongodb·elasticsearch·kafka·kafka-connect
梦里不知身是客112 小时前
flink的CDC 的种类
大数据·flink