Elasticsearch 中的相关性和得分

在Elasticsearch中,相关性(Relevance)和得分(Score)是搜索引擎技术中非常重要的概念,它们直接影响搜索结果的排序。

相关性(Relevance)

相关性是指搜索结果与用户查询的相关程度。对于用户而言,他们希望搜索结果尽可能与输入的查询意图相关。在Elasticsearch中,相关性是一个动态的概念,依据查询的内容和上下文的不同而变化。

得分(Score)

得分是Elasticsearch用来量化文档与查询相关性的一种机制。得分越高,表示文档与查询条件的相关性越强。Elasticsearch通过计算每个文档的得分来决定搜索结果的排序。

得分计算的方法

Elasticsearch默认使用BM25算法计算得分。BM25是一个基于词频和逆文档频率的算法,考虑了以下几个因素:

  • 词频(TF):在文档中,某个词出现的次数。一个常见的词在某个文档中出现得越多,说明该文档可能与该词更相关。

  • 逆文档频率(IDF):词在整个文档集中的稀有度。出现得少的词通常能提供更有针对性的相关性信息,因此IDF会提高这样的词的得分。

  • 文档长度:短文档通常会比长文档得分高,因为长文档可能包含更多的噪音信息。BM25使用文档长度的均值和标准差来调整得分。

BM25的基本公式如下:

  • TF(t,D):在文档D中词t出现的次数。
  • IDF(t):词t的逆文档频率。
  • ∣D∣:文档D的长度(字数)。
  • avgdl:所有文档的平均长度。
  • b和k1:调节参数,通常设置为 b=0.75和k1=1.2。

调整得分和相关性

在Elasticsearch中,可以通过以下方式调整得分和相关性:

  • 使用权重:在查询中可以为某些字段设置较高的权重,以提高其对结果的重要性。

  • 自定义评分:使用Function Score的查询功能,应用自定义的得分算法调整默认得分。

  • 规范化得分:通过自定义的打分功能,可以根据特定业务逻辑调整文档得分,确保更符合用户的需求。

相关推荐
跨境卫士情报站25 分钟前
摆脱砍单魔咒!Temu 自养号系统化采购,低成本高安全
大数据·人工智能·安全·跨境电商·亚马逊·防关联
AI营销实验室30 分钟前
AI CRM系统升级,原圈科技赋能销冠复制
大数据·人工智能
snpgroupcn32 分钟前
SAP系统动态归档与系统退役核心区别解析,以及会被问到的问题?
大数据
保卫大狮兄41 分钟前
TPM 到底用在设备管理的哪个阶段?
大数据·运维
禾高网络41 分钟前
互联网医院定制|互联网医院|禾高互联网医院搭建
java·大数据·人工智能·小程序
西安同步高经理42 分钟前
国产函数信号发生器对标国外产品性能如何、双通道函数发生器、国产函数信号发生器
大数据
小北方城市网1 小时前
第 5 课:Vue 3 HTTP 请求与 UI 库实战 —— 从本地数据到前后端交互应用
大数据·前端·人工智能·ai·自然语言处理
CES_Asia1 小时前
机器人“奥运会”登陆!CES Asia 2026角逐消费级机器人王座
大数据·人工智能·科技·机器人
电商API&Tina1 小时前
跨境电商速卖通(AliExpress)数据采集与 API 接口接入全方案
大数据·开发语言·前端·数据库·人工智能·python
xerthwis1 小时前
Hadoop:大数据世界的“古老基石”与“沉默的共生者”
大数据·人工智能·hadoop