llama_factory Qlora微调异常 No package metadata was found for The ‘autoawq‘

importlib.metadata.PackageNotFoundError: No package metadata was found for The 'autoawq' distribution was not found and is required by this application.

To fix: pip install autoawq

其实问题比较简单 直接安装autoawq 即可

但是对应会有版本问题:

查看当前llama factory版本

复制代码
llamafactory-cli version

torch 版本

复制代码
import torch
print(torch.__version__)
print(torch.version.cuda)
print(torch.backends.cudnn.version())

安装 autoawq 去Git上看大部分都支持CUDA 12.1 选择一个版本安装即可

复制代码
pip install autoawq==0.2.2 -i https://pypi.tuna.tsinghua.edu.cn/simple

当前环境报错:

因为autoawq 内置 torch 为2.3.1 所以会与本地torch 2.2.2版本不兼容

直接进行升级即可注意匹配CUDA (当前为12.1)版本

复制代码
pip install torch==2.3.1 torchvision==0.18.1 torchaudio==2.3.1 --index-url https://download.pytorch.org/whl/cu121

(小编尝试过版本降级,但总有其他依赖报错,进行放弃,升级)

查看安装是否成功:

复制代码
pip show torch
复制代码
conda list torch

torch 安装成功!

重新安装autoawq

复制代码
pip install autoawq==0.2.2 -i https://pypi.tuna.tsinghua.edu.cn/simple

问题解决!

后记:大模型微调lora与Qlora 区别还是挺大的,Qlora 微调起来相对麻烦一些对应处理依赖也会更多一些!

主要区别总结
适用范围 :LoRA 可以应用于任何未量化的模型,而 QLoRA 则专门用于已经量化的模型。
内存占用 :QLoRA 通常会比 LoRA 占用更少的内存,因为它可以利用量化带来的内存节省效果。
实现复杂度 :QLoRA 的实现可能比 LoRA 更加复杂,因为它需要处理量化模型特有的问题。
性能优化:QLoRA 通过使用 4-bit 量化和可学习的低秩适配器,能够在保持性能的同时显著减少内存使用

相关推荐
临街的小孩1 天前
Docker 容器访问宿主机 Ollama 服务配置教程
llama·argflow
鸿蒙小白龙1 天前
OpenHarmony平台大语言模型本地推理:llama深度适配与部署技术详解
人工智能·语言模型·harmonyos·鸿蒙·鸿蒙系统·llama·open harmony
AI大模型4 天前
轻松搞定百个大模型微调!LLaMA-Factory:你的AI模型量产神器
程序员·llm·llama
fly五行8 天前
大模型基础入门与 RAG 实战:从理论到 llama-index 项目搭建(有具体代码示例)
python·ai·llama·llamaindex
德育处主任Pro12 天前
前端玩转大模型,DeepSeek-R1 蒸馏 Llama 模型的 Bedrock 部署
前端·llama
relis12 天前
AVX-512深度实现分析:从原理到LLaMA.cpp的性能优化艺术
性能优化·llama
relis14 天前
llama.cpp RMSNorm CUDA 优化分析报告
算法·llama
云雾J视界14 天前
开源革命下的研发突围:Meta Llama系列模型的知识整合实践与启示
meta·开源·llama·知识管理·知识整合·知识迭代·知识共享
丁学文武15 天前
大模型原理与实践:第三章-预训练语言模型详解_第3部分-Decoder-Only(GPT、LLama、GLM)
人工智能·gpt·语言模型·自然语言处理·大模型·llama·glm
GRITJW15 天前
InstructGPT 论文略读:三步走,让大模型真正听懂人话
大模型微调