llama_factory Qlora微调异常 No package metadata was found for The ‘autoawq‘

importlib.metadata.PackageNotFoundError: No package metadata was found for The 'autoawq' distribution was not found and is required by this application.

To fix: pip install autoawq

其实问题比较简单 直接安装autoawq 即可

但是对应会有版本问题:

查看当前llama factory版本

llamafactory-cli version

torch 版本

import torch
print(torch.__version__)
print(torch.version.cuda)
print(torch.backends.cudnn.version())

安装 autoawq 去Git上看大部分都支持CUDA 12.1 选择一个版本安装即可

pip install autoawq==0.2.2 -i https://pypi.tuna.tsinghua.edu.cn/simple

当前环境报错:

因为autoawq 内置 torch 为2.3.1 所以会与本地torch 2.2.2版本不兼容

直接进行升级即可注意匹配CUDA (当前为12.1)版本

pip install torch==2.3.1 torchvision==0.18.1 torchaudio==2.3.1 --index-url https://download.pytorch.org/whl/cu121

(小编尝试过版本降级,但总有其他依赖报错,进行放弃,升级)

查看安装是否成功:

pip show torch
conda list torch

torch 安装成功!

重新安装autoawq

pip install autoawq==0.2.2 -i https://pypi.tuna.tsinghua.edu.cn/simple

问题解决!

后记:大模型微调lora与Qlora 区别还是挺大的,Qlora 微调起来相对麻烦一些对应处理依赖也会更多一些!

主要区别总结
适用范围 :LoRA 可以应用于任何未量化的模型,而 QLoRA 则专门用于已经量化的模型。
内存占用 :QLoRA 通常会比 LoRA 占用更少的内存,因为它可以利用量化带来的内存节省效果。
实现复杂度 :QLoRA 的实现可能比 LoRA 更加复杂,因为它需要处理量化模型特有的问题。
性能优化:QLoRA 通过使用 4-bit 量化和可学习的低秩适配器,能够在保持性能的同时显著减少内存使用

相关推荐
三月七(爱看动漫的程序员)19 小时前
LEAST-TO-MOST PROMPTING ENABLES COMPLEX REASONING IN LARGE LANGUAGE MODELS---正文
人工智能·gpt·学习·机器学习·语言模型·自然语言处理·llama
码狂☆1 天前
源码编译llama.cpp for android
android·人工智能·llama
苍墨穹天1 天前
LLaMA-Factory 单卡3080*2 deepspeed zero3 微调Qwen2.5-7B-Instruct
deepspeed·llama-factory
Ambition_LAO1 天前
LLaMA-Factory QuickStart 流程详解
llm·llama
宇梵文书C2 天前
在CFFF云平台使用llama-factory部署及微调Qwen2.5-7B-Instruct
llm·llama·cfff
CSBLOG2 天前
Day27 - 大模型微调,LLaMA搭建
人工智能·深度学习·llama
python_知世3 天前
基于LLaMA-Factory微调Llama3
人工智能·深度学习·程序人生·自然语言处理·大语言模型·llama·大模型微调
handsomelky3 天前
ollama本地部署大语言模型记录
人工智能·语言模型·自然语言处理·chatgpt·llama·ollama·gemma
曦云沐3 天前
Llama3模型详解 - Meta最新开源大模型全面解析
开源·llama
诚威_lol_中大努力中5 天前
关于llama2:从原始llama-2-7b到llama-2-7b-hf的权重转换教程
llama