llama_factory Qlora微调异常 No package metadata was found for The ‘autoawq‘

importlib.metadata.PackageNotFoundError: No package metadata was found for The 'autoawq' distribution was not found and is required by this application.

To fix: pip install autoawq

其实问题比较简单 直接安装autoawq 即可

但是对应会有版本问题:

查看当前llama factory版本

复制代码
llamafactory-cli version

torch 版本

复制代码
import torch
print(torch.__version__)
print(torch.version.cuda)
print(torch.backends.cudnn.version())

安装 autoawq 去Git上看大部分都支持CUDA 12.1 选择一个版本安装即可

复制代码
pip install autoawq==0.2.2 -i https://pypi.tuna.tsinghua.edu.cn/simple

当前环境报错:

因为autoawq 内置 torch 为2.3.1 所以会与本地torch 2.2.2版本不兼容

直接进行升级即可注意匹配CUDA (当前为12.1)版本

复制代码
pip install torch==2.3.1 torchvision==0.18.1 torchaudio==2.3.1 --index-url https://download.pytorch.org/whl/cu121

(小编尝试过版本降级,但总有其他依赖报错,进行放弃,升级)

查看安装是否成功:

复制代码
pip show torch
复制代码
conda list torch

torch 安装成功!

重新安装autoawq

复制代码
pip install autoawq==0.2.2 -i https://pypi.tuna.tsinghua.edu.cn/simple

问题解决!

后记:大模型微调lora与Qlora 区别还是挺大的,Qlora 微调起来相对麻烦一些对应处理依赖也会更多一些!

主要区别总结
适用范围 :LoRA 可以应用于任何未量化的模型,而 QLoRA 则专门用于已经量化的模型。
内存占用 :QLoRA 通常会比 LoRA 占用更少的内存,因为它可以利用量化带来的内存节省效果。
实现复杂度 :QLoRA 的实现可能比 LoRA 更加复杂,因为它需要处理量化模型特有的问题。
性能优化:QLoRA 通过使用 4-bit 量化和可学习的低秩适配器,能够在保持性能的同时显著减少内存使用

相关推荐
进取星辰21 小时前
Windows 10 上运行 Ollama 时遇到 llama runner process has terminated: exit status 2
windows·llama
明天一定早睡早起1 天前
LLaMa Factory大模型微调
llama
脑极体2 天前
应激的Llama,开源的困局
llama
游离子丶4 天前
LLama Factory从入门到放弃
语言模型·游戏程序·llama·yuzu-soft
T0uken4 天前
【LLM】llama.cpp:合并 GGUF 模型分片
语言模型·llama
剑客的茶馆6 天前
GPT,Genini, Claude Llama, DeepSeek,Qwen,Grok,选对LLM大模型真的可以事半功倍!
gpt·llm·llama·选择大模型
try2find6 天前
llama-webui docker实现界面部署
docker·容器·llama
寻丶幽风7 天前
论文阅读笔记——Mixtral of Experts
论文阅读·笔记·语言模型·llama·moe
deephub7 天前
从零开始用Pytorch实现LLaMA 4的混合专家(MoE)模型
人工智能·pytorch·深度学习·大语言模型·llama
仙人掌_lz10 天前
详解如何复现LLaMA 4:从零开始利用Python构建
人工智能·python·ai·llama·智能体·ai agents