llama_factory Qlora微调异常 No package metadata was found for The ‘autoawq‘

importlib.metadata.PackageNotFoundError: No package metadata was found for The 'autoawq' distribution was not found and is required by this application.

To fix: pip install autoawq

其实问题比较简单 直接安装autoawq 即可

但是对应会有版本问题:

查看当前llama factory版本

复制代码
llamafactory-cli version

torch 版本

复制代码
import torch
print(torch.__version__)
print(torch.version.cuda)
print(torch.backends.cudnn.version())

安装 autoawq 去Git上看大部分都支持CUDA 12.1 选择一个版本安装即可

复制代码
pip install autoawq==0.2.2 -i https://pypi.tuna.tsinghua.edu.cn/simple

当前环境报错:

因为autoawq 内置 torch 为2.3.1 所以会与本地torch 2.2.2版本不兼容

直接进行升级即可注意匹配CUDA (当前为12.1)版本

复制代码
pip install torch==2.3.1 torchvision==0.18.1 torchaudio==2.3.1 --index-url https://download.pytorch.org/whl/cu121

(小编尝试过版本降级,但总有其他依赖报错,进行放弃,升级)

查看安装是否成功:

复制代码
pip show torch
复制代码
conda list torch

torch 安装成功!

重新安装autoawq

复制代码
pip install autoawq==0.2.2 -i https://pypi.tuna.tsinghua.edu.cn/simple

问题解决!

后记:大模型微调lora与Qlora 区别还是挺大的,Qlora 微调起来相对麻烦一些对应处理依赖也会更多一些!

主要区别总结
适用范围 :LoRA 可以应用于任何未量化的模型,而 QLoRA 则专门用于已经量化的模型。
内存占用 :QLoRA 通常会比 LoRA 占用更少的内存,因为它可以利用量化带来的内存节省效果。
实现复杂度 :QLoRA 的实现可能比 LoRA 更加复杂,因为它需要处理量化模型特有的问题。
性能优化:QLoRA 通过使用 4-bit 量化和可学习的低秩适配器,能够在保持性能的同时显著减少内存使用

相关推荐
人工智能培训咨询叶梓3 小时前
LLAMAFACTORY:一键优化大型语言模型微调的利器
人工智能·语言模型·自然语言处理·性能优化·调优·大模型微调·llama factory
橘子在努力7 小时前
【橘子大模型】关于PromptTemplate
python·ai·llama
Chaos_Wang_1 天前
NLP高频面试题(三十)——LLama系列模型介绍,包括LLama LLama2和LLama3
人工智能·自然语言处理·llama
艾鹤2 天前
ollama安装与使用
人工智能·llama
清易2 天前
windows大模型llamafactory微调
llama
漠北尘-Gavin3 天前
【Python3.12.9安装llama-cpp-python遇到编译报错问题解决】
python·llama
爱听歌的周童鞋4 天前
理解llama.cpp如何进行LLM推理
llm·llama·llama.cpp·inference
溯源0064 天前
vscode调试python(transformers库的llama为例)
vscode·python·llama
Flying`4 天前
LLaMA-Factory微调实操记录
llama
张飞飞飞飞飞4 天前
通过Llama-Factory对Deepseek-r1:1.5b进行微调
llama