108. 冗余连接
cpp
#include <iostream>
#include <vector>
using namespace std;
void init(vector<int> &father) {
for (int i = 0; i < father.size(); ++i) {
father[i] = i;
}
}
int find(vector<int>& father, int u) {
if (father[u] == u) return u;
return father[u] = find(father, father[u]);
}
int isSame(vector<int>& father, int u, int v) {
u = find(father, u);
v = find(father, v);
return u == v;
}
void join(vector<int>& father, int u, int v) {
u = find(father, u);
v = find(father, v);
if (u == v) return;
father[v] = u;
}
int main()
{
int n, u, v, resultu, resultv;
cin >> n;
vector<int> father(n + 1, 0);
init(father);
for (int i = 0; i < n; ++i) {
cin >> u >> v;
if (isSame(father, u, v)) {
resultu = u;
resultv = v;
}
else
join(father, u, v);
}
cout << resultu << " " << resultv << endl;
return 0;
}
109. 冗余连接II
关键是要能够分出两种情况:
- 是不是存在入度为2的点,然后判断哪一条边去掉,还是连通的。在这里也有两种情况,一种是直接删除最后一个边,一种是会形成环。
- 是不是存在环
cpp
#include <iostream>
#include <vector>
using namespace std;
void init(vector<int>& father) {
for (int i = 0; i < father.size(); ++i) {
father[i] = i;
}
}
int find(vector<int>& father, int u) {
if (father[u] == u) return u;
return father[u] = find(father, father[u]);
}
int isSame(vector<int>& father, int u, int v) {
u = find(father, u);
v = find(father, v);
return u == v;
}
void join(vector<int>& father, int u, int v) {
u = find(father, u);
v = find(father, v);
if (u == v) return;
father[v] = u;
}
bool isTreeAfterRemove(vector<int>& father, const vector<vector<int>>& edges, int deleteEdge) {
init(father);
for (int i = 0; i < edges.size(); ++i) {
if (i == deleteEdge) continue;
if (isSame(father, edges[i][0], edges[i][1]))
return false;
join(father, edges[i][0], edges[i][1]);
}
return true;
}
void getRemoveEdge(vector<int>& father, const vector<vector<int>>& edges) {
init(father);
for (vector<int> pair : edges) {
if (isSame(father, pair[0], pair[1])) {
cout << pair[0] << " " << pair[1] << endl;
return;
}
join(father, pair[0], pair[1]);
}
}
int main()
{
int n, u, v;
cin >> n;
vector<int> father(n + 1, 0);
vector<vector<int>> edges;
vector<int> inDegrees(n + 1, 0);
for (int i = 0; i < n; ++i) {
cin >> u >> v;
inDegrees[v]++;
edges.emplace_back(vector<int>{u, v});
}
vector<int> vec;
for (int i = n - 1; i >= 0; --i) {
if (inDegrees[edges[i][1]] == 2)
vec.push_back(i);
}
if (vec.size() > 0) {
if (isTreeAfterRemove(father, edges, vec[0])) {
cout << edges[vec[0]][0] << " " << edges[vec[0]][1] << endl;
}
else
cout << edges[vec[1]][0] << " " << edges[vec[1]][1] << endl;
return 0;
}
getRemoveEdge(father, edges);
return 0;
}