6.1.数据结构-c/c++堆详解下篇(堆排序,TopK问题)

上篇:6.1.数据结构-c/c++模拟实现堆上篇(向下,上调整算法,建堆,增删数据)-CSDN博客

本章重点

1.使用堆来完成堆排序

2.使用堆解决TopK问题

一.堆排序

1.1 思路

由于堆的特殊性质,可以使用堆来堆数组进行排序,而且效率较高。

这里以排降序为例。

1.根据数组建堆

2.排序

a.将堆顶数据和最后一个数据交换,n--

b.0~n -1位置还满足向下调整算法。再次调整为堆

c.继续交换

如下图

排升序:建立大根堆

排降序:建立小根堆

1.2 代码

cpp 复制代码
//降序为例
void HeapSort(int* arr, int n)
{
	//1.将数组建堆,使用向下调整算法建立小根堆
	for (int i = (n - 1 - 1) / 2; i >= 0; i--)
	{
		Adjustdown(arr, n, i);
	}

	//2.排序
	//a.将堆顶数据和最后一个数据交换,再让n--,
	//b.此时0~n-1还是可以使用调整算法调整为堆
	//c.继续交换
	int end = n - 1;
	while (end >= 0)
	{
		swap(arr[0], arr[end]);
		Adjustdown(arr, end, 0);
		end--;
	}
}

1.3 简单测试

测试主函数代码如下

cpp 复制代码
int main()
{
	DataType arr[] = { 1,5,9,7,5,3,4,6,8,2,4,4,15,19,59,75,73,53,46,82 };

	cout << "排序前:" << endl;
	for (int i = 0; i < sizeof(arr) / sizeof(arr[0]); i++)
	{
		cout << arr[i] << " ";
	}

	cout << endl << "排序后:" << endl;
	HeapSort(arr, sizeof(arr) / sizeof(arr[0]));
	for (int i = 0; i < sizeof(arr) / sizeof(arr[0]); i++)
	{
		cout << arr[i] << " ";
	}
	return 0;
}

测试结果

二.TopK问题

TopK问题是,如何从n个数据中找出前k个最大,或者最小的数据。

Leetcode原题:面试题 17.14. 最小K个数 - 力扣(LeetCode)

2.1 思路:

  1. 我们建立一个大小为 k 的堆

  2. 求最小,建立大根堆。求最大,建立小根堆。

  3. 遍历数组,遇到比堆顶数据小的数据 i 时,将数据 i 替换堆顶。然后对堆使用向下调整

2.2 C语言代码(手写堆)

cpp 复制代码
//向下调整算法,求最小,建立大根堆
void Adjustdown(int*arr,int n,int root)
{
    int parent=root;
    int child=parent*2+1;
    
    while(child<n)
    {
        if(child+1<n && arr[child]<arr[child+1] )
            child++;

        if(arr[child]>arr[parent])
        {
            int t=arr[child];
            arr[child]=arr[parent];
            arr[parent]=t;

            parent=child;
            child=parent*2+1;
        }
        else
        {
            break;
        }
    }
}


int* smallestK(int* arr, int arrSize, int k, int* returnSize)
{
    *returnSize=k;
    if(*returnSize==NULL)
        return NULL;
    //定义k大小的数组,并拷贝前k个数据,并且调整为堆
    int *Rarr=(int*)malloc(sizeof(int)*k);
    for(int i=0;i<k;i++)
    {
        Rarr[i]=arr[i];
    }

    for(int i=(k-1-1)/2;i>=0;i--)
    {
        Adjustdown(Rarr,k,i);
    }

    //TopK法,遍历原数组,遇到比堆顶还要小,删堆顶,插入新元素
    //这里从k开始,是因为前面已经拷贝了k个数据
    for(int i=0;i<k;i++)
    {
        printf("%d ",Rarr[i]);
    }
    printf("\n");

    for(int i=k;i<arrSize;i++)
    {
        if(arr[i]<Rarr[0])
        {
            //1.替换数据
            Rarr[0]=arr[i];
            //2.重新调整
            Adjustdown(Rarr,k,0);
        }
    }
    return Rarr;
}

2.3 C++代码(使用优先级队列 priority_queue)

优先级队列 priority_queue 就是堆

cpp 复制代码
//优先级队列
//1.默认的为大根堆
priority_queue<int, vector<int>> pq;

//使用greator为小根堆
priority_queue<int, vector<int>, greater<int>>pq;

解题代码

cpp 复制代码
class Solution {
public:
    vector<int> smallestK(vector<int>& arr, int k) 
    {
        vector<int> retarr(k);
        if(k==0)
            return retarr;
        //使用优先级队列建立大根堆
        priority_queue<int,vector<int>> pq;
        
        //1.拷贝k个数据
        for(int i=0;i<k;i++)
        {
            pq.push(arr[i]);
        }

        //2.遍历数组,替换比堆顶大的数据
        for(int i=k;i<arr.size();i++)
        {
            if(arr[i]<pq.top())
            {
                pq.pop();
                pq.push(arr[i]);
            }
        }

       for(int i=0;i<k;i++)
        {
            retarr[i]=pq.top();
            pq.pop();
        }
        return retarr;
    }
};
相关推荐
明灯L几秒前
《函数基础与内存机制深度剖析:从 return 语句到各类经典编程题详解》
经验分享·python·算法·链表·经典例题
uhakadotcom5 分钟前
Helm 简介与实践指南
后端·面试·github
碳基学AI6 分钟前
哈尔滨工业大学DeepSeek公开课:探索大模型原理、技术与应用从GPT到DeepSeek|附视频与讲义免费下载方法
大数据·人工智能·python·gpt·算法·语言模型·集成学习
补三补四10 分钟前
机器学习-聚类分析算法
人工智能·深度学习·算法·机器学习
独好紫罗兰20 分钟前
洛谷题单3-P5718 【深基4.例2】找最小值-python-流程图重构
开发语言·python·算法
云边有个稻草人25 分钟前
【C++】第八节—string类(上)——详解+代码示例
开发语言·c++·迭代器·string类·语法糖auto和范围for·string类的常用接口·operator[]
正脉科工 CAE仿真34 分钟前
基于ANSYS 概率设计和APDL编程的结构可靠性设计分析
人工智能·python·算法
惊鸿一博1 小时前
c++ &&(通用引用)和&(左值引用)区别
开发语言·c++
爱喝热水的呀哈喽1 小时前
Java 集合 Map Stream流
数据结构
Dovis(誓平步青云)1 小时前
【数据结构】排序算法(中篇)·处理大数据的精妙
c语言·数据结构·算法·排序算法·学习方法