【数据结构-二维前缀和】【列维护优化】力扣3212. 统计 X 和 Y 频数相等的子矩阵数量

给你一个二维字符矩阵 grid,其中 grid[i][j] 可能是 'X'、'Y' 或 '.',返回满足以下条件的

子矩阵

数量:

包含 grid[0][0]

'X' 和 'Y' 的频数相等。

至少包含一个 'X'。

示例 1:

输入: grid = [["X","Y","."],["Y",".","."]]

输出: 3

解释:

示例 2:

输入: grid = [["X","X"],["X","Y"]]

输出: 0

解释:

不存在满足 'X' 和 'Y' 频数相等的子矩阵。

示例 3:

输入: grid = [[".","."],[".","."]]

输出: 0

解释:

不存在满足至少包含一个 'X' 的子矩阵。

提示:

1 <= grid.length, grid[i].length <= 1000

grid[i][j] 可能是 'X'、'Y' 或 '.'.


二位前缀和

cpp 复制代码
class Solution {
public:
    int numberOfSubmatrices(vector<vector<char>>& grid) {
        int m = grid.size(), n = grid[0].size();
        int ans = 0;
        vector<vector<array<int,2>>> sum(m+1, vector<array<int,2>>(n+1));
        for(int i = 0; i < m; i++){
            for(int j = 0; j < n; j++){
                sum[i+1][j+1][1] = sum[i+1][j][1] + sum[i][j+1][1] - sum[i][j][1];
                sum[i+1][j+1][0] = sum[i+1][j][0] + sum[i][j+1][0] - sum[i][j][0];
                if(grid[i][j] != '.'){
                    sum[i+1][j+1][grid[i][j] & 1]++;
                }

                if(sum[i+1][j+1][0] && sum[i+1][j+1][0] == sum[i+1][j+1][1]){
                    ans++;
                }
            }
        }
        return ans;
    }
};

时间复杂度 :O(mn),其中 m 和 n 分别为 grid 的行数和列数。
空间复杂度:O(mn)。

还是二位前缀和,这道题 x 的 ASCII 码值是 120。y 的 ASCII 码值是 121。X的二进制表示: 01111000,Y的二进制表示: 01111001。所以可以根据ascii码的二进制最低为来储存X和Y的数据。

题解中

cpp 复制代码
sum[i+1][j+1][1] = sum[i+1][j][1] + sum[i][j+1][1] - sum[i][j][1];

细心的人就会发现怎么没有加上grid[i][j]所储存的值。实际上在下面代码中,当网格元素不等于'.'的时候,就是加上了grid[i][j]所储存的值,在这里表示为sum[i+1][j+1][grid[i][j] & 1]++;,最后判断X是否不为0,并比较前缀和中X和Y的数量是否相等。


优化:维护列字符元素

cpp 复制代码
class Solution {
public:
    int numberOfSubmatrices(vector<vector<char>>& grid) {
        int m = grid.size(), n = grid[0].size();
        int ans = 0;
        vector<array<int, 2>> col_sum(n);
        for(int i = 0; i < m; i++){
            int s1 = 0, s2 = 0;
            for(int j = 0; j < n; j++){
                if(grid[i][j] != '.'){
                    col_sum[j][grid[i][j] & 1]++;
                }

                s1 += col_sum[j][0];
                s2 += col_sum[j][1];

                if(s1 && s1 == s2){
                    ans++;
                }
            }
        } 
        return ans;
    }
};

时间复杂度 :O(mn),其中 m 和 n 分别为 grid 的行数和列数。
空间复杂度:O(n)。

这是通过维护列的方式进行优化。我觉得列优化的核心思路是,由于在计算前缀和中,之前的列字符数都会被用到,也就是说在遍历不同行的时候,列的字符数是在前一行的列的字符数加上目前行的字符数得来的。所以我们可以把前缀和中行的维度给去掉,因为维护的列字符里就包含着之前行的信息。

所以在每一行遍历的时候,置s1和s2为0,然后逐渐累加,可以看作这个前缀和矩阵,随着列的遍历,一条条竖下来的元素铺成一个前缀和矩阵,最后进行统计X和Y相等的频数。

相关推荐
2501_941623323 小时前
智慧农业监控平台中的多语言语法引擎与实时决策实践
leetcode
小白程序员成长日记7 小时前
2025.11.24 力扣每日一题
算法·leetcode·职场和发展
有一个好名字7 小时前
LeetCode跳跃游戏:思路与题解全解析
算法·leetcode·游戏
2501_941870568 小时前
Python在高并发微服务数据同步与分布式事务处理中的实践与优化
leetcode
xiaoye-duck10 小时前
计数排序:高效非比较排序解析
数据结构
2501_9411477110 小时前
高并发微服务架构Spring Cloud与Dubbo在互联网优化实践经验分享
leetcode
稚辉君.MCA_P8_Java12 小时前
通义 插入排序(Insertion Sort)
数据结构·后端·算法·架构·排序算法
无限进步_12 小时前
C语言动态内存的二维抽象:用malloc实现灵活的多维数组
c语言·开发语言·数据结构·git·算法·github·visual studio
Swift社区13 小时前
LeetCode 432 - 全 O(1) 的数据结构
数据结构·算法·leetcode
芬加达13 小时前
leetcode34
java·数据结构·算法