【Hadoop|HDFS篇】DataNode

1. DataNode的工作机制

1)一个数据块在DataNode上以文件形式存储在磁盘上,包括两个文件,一个是数据本身,一个是元数据包括数据块的长度,块数据的校验和,以及时间戳。

2)DataNode启动后向NameNode注册,通过后,周期性(6h)的向NameNode上报所有块信息。

DN向NN汇报当前解读信息的时间间隔,默认6小时。

DN扫描自己节点块信息列表的时间,默认为6小时。

3)心跳是每3s一次,心跳返回的结果带有NameNode给该DataNode的命令如复制块数据到另一台机器上,或删除某个数据块,如果超过10分钟没收到某个DataNode的心跳,NameNode认为该DataNode挂掉了。信息不会存储在该DataNode上了。

如图:

我把hadoop104这台机器停掉了,超过了10分种加三十秒没向hadoop102发送心跳,NameNode则认为我这台机器挂掉了。以后Block不会存储在这个节点上了。但能不能恢复呢。是可以的。开启hadoop104并输入命令hdfs --daemon start datanode.

2. 数据的完整性

思考:如果电脑磁盘里面存储的数据是控制高铁信号灯的红灯信号(1)和绿灯信号(0).但是存储该数据的磁盘坏了,一直显示是绿灯,是否很危险呢?同理DataNode节点上的数据损坏了,但没有发现,是否也很危险呢?该如何解决呢?

如下是DataNode节点保证数据完整性的方法:

  • 当DataNode读取Block时,它会计算CheckSum校验和。
  • 如果计算后的校验和与Block创建的时候的值不一样,说明Block已经损坏。
  • Client读取其他DataNode上的Block。
  • 常见的校验算法crc(32),md5(128),shal(160).
  • DataNode在其文件创建后周期验证CheckSum。

3. DataNode掉线时参数设置

  1. DataNode进程死亡或者网络故障造成DataNode无法与NameNode通信。

  2. NameNode不会立即把该节点判定为死亡,要经过一段时间,这段时间暂停称作超时时长。

  3. HDFS默认的超时时长为10分钟+30s。

如果定义超时时间为TimeOut,则超时时长的计算公式为:

TimeOut = 2*dfs.namenode.heartbeat.recheck-interval + 10*dfs.heartbeat.interval。

而默认的dfs.namenode.heartbeat.recheck-interval大小为5分钟,dfs.heartbeat.interval默认为3s。

绿色框框的表示2s前向NameNode发送心跳。

相关推荐
szxinmai主板定制专家2 小时前
【国产NI替代】基于FPGA的32通道(24bits)高精度终端采集核心板卡
大数据·人工智能·fpga开发
TGB-Earnest3 小时前
【py脚本+logstash+es实现自动化检测工具】
大数据·elasticsearch·自动化
大圣数据星球5 小时前
Fluss 写入数据湖实战
大数据·设计模式·flink
suweijie7685 小时前
SpringCloudAlibaba | Sentinel从基础到进阶
java·大数据·sentinel
Data跳动11 小时前
Spark内存都消耗在哪里了?
大数据·分布式·spark
woshiabc11112 小时前
windows安装Elasticsearch及增删改查操作
大数据·elasticsearch·搜索引擎
lucky_syq12 小时前
Saprk和Flink的区别
大数据·flink
lucky_syq12 小时前
流式处理,为什么Flink比Spark Streaming好?
大数据·flink·spark
袋鼠云数栈12 小时前
深入浅出Flink CEP丨如何通过Flink SQL作业动态更新Flink CEP作业
大数据