scRNA-data中的R值

愿武艺晴小朋友一定得每天都开心


当我们测序拿得到各个样本中基因的表达值,就可以用基因表达值来表征样本间的相关性

代码如下:

#样本间相似性:R值 相关性 捕获到的基因在两个样本间表达趋势一致性

exp_RNA <- AverageExpression(fasting_memory,

group.by = "Sample",layer = "data") #CPM值来自data图层

exp_RNA <- as.data.frame(exp_RNA)

colnames(exp_RNA) <- c("fed","health","memory_10d","memory_35d","memory_66d")

library(ArchR)

library(viridis)

head(exp_RNA)

df<-exp_RNA[,c(1,5)] #依次计算各个组

head(df)

#为了提高数据质量和准确性,使用两组间表达值都非0的基因用于R值的计算

df<-subset.data.frame(df,df$fed!=0)

df<-subset.data.frame(df,df$memory_66d!=0)

cor(df[,2],df[,1])

library(ggrepel)

df$gene <- rownames(df)

dfslope \<- dfmemory_66d/df$fed #斜率代表在66d组中跟fed组间的表达差别很大

head(df)

label <- subset.data.frame(df,df$slope>1000)

head(label)

ggPoint(x = dffed,y = dfmemory_66d,size=1,

title = "r=0.41",

colorDensity = TRUE,

continuousSet = "solarExtra",

ylabel = "memory_66d:log2(CPM+1)",

xlabel = "fed:log2(CPM+1)",

xlim = c(0,170),

ylim = c(0,170))+ mytheme+

geom_hline(yintercept = 40, lty = "dashed")+

geom_vline(xintercept = 40, lty = "dashed")

#图的样子:

相关推荐
Dekesas96959 小时前
【深度学习】基于Faster R-CNN的黄瓜幼苗智能识别与定位系统,农业AI新突破
人工智能·深度学习·r语言
Serendipity_Carl14 小时前
数据可视化实战之链家
python·数据可视化·数据清洗
青啊青斯17 小时前
二、PaddlePaddle seal_recognition印章内容提取
人工智能·r语言·paddlepaddle
Piar1231sdafa18 小时前
木结构建筑元素识别与分类:基于Faster R-CNN的高精度检测方法
分类·r语言·cnn
imbackneverdie19 小时前
国自然申报技术路线图模板
图像处理·人工智能·信息可视化·数据可视化·学术·国自然·国家自然科学基金
hdsoft_huge1 天前
在天地图中使用不同格式高效加载 PostGIS 的方案
arcgis·postgresql·数据可视化
Piar1231sdafa1 天前
智能拖拉机目标检测:改进Faster R-CNN的实践与优化
目标检测·r语言·cnn
阿达_优阅达2 天前
Tableau 2025.3 发布!可视化扩展升级、Server 版 Agent、平台数据 API,让 AI 深度融入业务工作流
人工智能·ai·数据分析·数据可视化·仪表板·tableau·版本更新
希艾席帝恩2 天前
数字孪生如何重塑现代制造体系?
大数据·人工智能·数字孪生·数据可视化·数字化转型
Pyeako2 天前
Python数据可视化--matplotlib库
python·matplotlib·数据可视化·画图·pylab