scRNA-data中的R值

愿武艺晴小朋友一定得每天都开心


当我们测序拿得到各个样本中基因的表达值,就可以用基因表达值来表征样本间的相关性

代码如下:

#样本间相似性:R值 相关性 捕获到的基因在两个样本间表达趋势一致性

exp_RNA <- AverageExpression(fasting_memory,

group.by = "Sample",layer = "data") #CPM值来自data图层

exp_RNA <- as.data.frame(exp_RNA)

colnames(exp_RNA) <- c("fed","health","memory_10d","memory_35d","memory_66d")

library(ArchR)

library(viridis)

head(exp_RNA)

df<-exp_RNA[,c(1,5)] #依次计算各个组

head(df)

#为了提高数据质量和准确性,使用两组间表达值都非0的基因用于R值的计算

df<-subset.data.frame(df,df$fed!=0)

df<-subset.data.frame(df,df$memory_66d!=0)

cor(df[,2],df[,1])

library(ggrepel)

df$gene <- rownames(df)

dfslope \<- dfmemory_66d/df$fed #斜率代表在66d组中跟fed组间的表达差别很大

head(df)

label <- subset.data.frame(df,df$slope>1000)

head(label)

ggPoint(x = dffed,y = dfmemory_66d,size=1,

title = "r=0.41",

colorDensity = TRUE,

continuousSet = "solarExtra",

ylabel = "memory_66d:log2(CPM+1)",

xlabel = "fed:log2(CPM+1)",

xlim = c(0,170),

ylim = c(0,170))+ mytheme+

geom_hline(yintercept = 40, lty = "dashed")+

geom_vline(xintercept = 40, lty = "dashed")

#图的样子:

相关推荐
翰佰尔HiOmics云分析2 天前
转录组分析实战:GO与KEGG富集分析原理及R语言实现
r语言·转录组·krgg
Q一件事2 天前
R语言处理潜在蒸散nc数据
开发语言·r语言
CodeCraft Studio3 天前
空间天气监测,TeeChart助力实现太阳活动数据的可视化分析
信息可视化·数据挖掘·数据分析·数据可视化·teechart·科研图表·图表库
FIT2CLOUD飞致云3 天前
安全漏洞修复,API数据源支持添加时间戳参数,DataEase开源BI工具v2.10.17 LTS版本发布
开源·数据可视化·dataease·bi·数据大屏
胡侃有料3 天前
【目标检测】two-stage------Mask R-CNN浅析-2018
目标检测·r语言·cnn
图扑可视化4 天前
图扑 HT 智慧汽车展示平台全自研技术方案
汽车·数据可视化·组态监控·汽车展示
Highcharts.js5 天前
Highcharts开发解析:从数据可视化到用户体验的全面指南
信息可视化·前端框架·数据可视化·ux·highcharts·交互图表
饭九钦vlog6 天前
一键配置kali脚本
r语言
数字冰雹6 天前
为城市治理装上“数字引擎”
中间件·数据可视化